
REPIACENENT AlICE (U)IR FORCE 181ST OF-TECH
MRIONT-PATTERSON AFI ON SCHOOL OF ENGI. H 0 HAIKEN

RSSIFIED DEC 89 AFIT/GCS/EN/890-7 F/G 1/2 U

: 1 11 .1 1 h 1L

CN
LO

DTIC

OF S cB U

An Expert System for Automating Nuclear Strike Aircraft

Replacement, Aircraft Beddown, and Logistics Movement
for The Theater Warfare Exercise

FTHESIS

Harold Dallas Harken III
Captain, USAF

AFIT/GCS/ENG/89D-7

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

- 89 12 26 157

AFIT/GCS/ENG/89D-7

An Expert System for Automating Nuclear Strike Aircraft Replacement,

Aircraft Beddown, and Logistics Movement for

The Theater Warfare Exercise

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Harold Dallas Harken III, B.S.

Captain, USAF

December, 1989

Approved for public release; distribution unlimited

Preface

The goal of this thesis was to determine a means for automating the planning section of

the Air University's Theater Warfare Exercise (TWX). By delving into the areas of Artificial

Intelligence and Database Management Systems, this thesis presents a flexible, efficient, and

effective platform for realizii g the above goal.

This thesis presents the requirements, analysis, and solutions for the realization of an

automated red player for TWX. I hope I have supplied a basis on which other thesis efforts in

this intriguing area of research might originate.

I am venuinely vrqteful to my thesis advisor, Major Mark Roth, for all those non-

committal looks he presented whenever he scanned my work. Basically a pessimist, I would

always try to find that little something extra which might turn that expression to perhaps a

small smile or maybe even a nod of approval. It was a mischievous way of keeping me on my

to)es, but it worked. Thanks Mark. I also wish to thank the members of my thesis committee,

Dr. Thomas Hartrum and Lieutenant Colonel Charles Bisbee for all the helpful insights they

contributed and for their grammatical expertise which I always seem to lack. Finally, I would

like to thank the people that I dearly missed during the time I spent struggling towards

graduation; my loving wife, Whitney, and our children, Ashley and Katy. Through all the

(lance lessons, school picnics, and dinners at home that I missed, I am truly thankful that I

still received their support, understanding, and most of all their love. Girls, Disney World

here we come.

NiTS V AI lIarold Dallas Harken III
DTLO TAB E

-- Avail and/or
,ist SpecialiI | II

Table of Contents

Page

P~reface .. ii

Table of Contents iii

List of Figures vii

Abstract i

1. Introduction 1

1.1 Background 1

1.2 Problem Statement 2

1.2.1 The Computer Interface Task. 3

1.2.2 A Consistent and Realistic Opponent. 3

1.2.3 A Platform for Evaluating Seminars 5

1.3 Proposed Solutions 5

1.3.1 Automating the AAFCE Phase 6

1.3.2 Automating th.- ATAF Phase 7

1.4 Assumptions. 7

1.5 Anoroach/Methodology. 8

1.6 Materials and Equipment 11

1.7 Sequence of Presentation 11

11. Literature Review13

2.1 Introduction 13

2. 1.1 An Overview of Artificial Intelligence (Al) 13

2.1.2 A brieC Gvr,ic-u of Database Systems. 16

2.2 Applications 18

Page

2.2.1 Semantic Networks for Database Management. 19

2.2.2 Knowledge-Bases 24

2.2.3 Expert Systems. 31

2.3 Summary-Where Do We Go From Here? . 34

II.Evaluation and Selection of An Expert System Shell. 37

3.1 Criteria for Selection 37

3.2 Portability 37

3.3 Data Representation 38

3.4 Developmental and Delivery Environments 40

3.5 Shell Features. 42

3.5.1 Control Schemes 42

3.5.2 Graphical Representation. 43

-3.5.3 Why/How Explanation Facilities 44

3.6 Cost. 45

3.7 Summary. 46

1V. Replact-ment of Nuclear Strike Aircraft 47

4.1 Requirements. 47

4.2 Analysis 47

4.2.1 Object-Oriented Design. 47

4.2.2 Rule Generation. 48

4.3 Solution 56

4.4 Sum m ary 59

V A ircraft Beddown 60

5.1 Requirem ents 60

5.2 Analysis 61

1~ Prioritization of Aircraft and Airhases. 61

IV

Page

5.2.2 Object-Oriented Design 62

5.2.3 Rule Generation 63

5.3 Solution 70

5.4 Sum m ary 72

VI. Logistics M ovem ent 75

6.1 A nalysisI 76

6.1.1 Object-Oriented Design. 76

6.1.2 Rule Generation 76

6.2 S olution 85

6.3 Sum m ary 89

%Ill. Conclusions and Recommendations 90

7.1 Summary 90

7.2 Recommendations for Further Work. 91

Appcendiv A' User's Manual 93

A. 1 Introduction 93

A.2 TWX Database Files and Operations. 94

A.3 Nexpert Files and Operations on the PC 96

A.4 Summary. 101

Appendix B. Programmer's Manual. 102

B. 1 Introduction. 102

B.2 The Class Editor. 103

B.3 Rule Editor 105

B.4 The Objc,-t Editor. 112

B.5 The Context Editor 116

B.6 The Property Editor 117

B.7 The Forms Input Utility 119

v

Page

B.8 Summary. 122

Bibliography 123

Vita.. 125

vi

List of Figures

Figuire Page

1. TWX Organizational Chart for Blue and Red Players. 4

2. The Turing Test for Al. 14

3. A semantic net for "Helen offered Bill a solution .". 15

4. Relational Database Table. 17

5. A semantic net for Company 1 and Company2 20

6. WRT Mapping of Company2 and Part #73005 to a price. 20

'7, Selection Operation. 22

8. Union Operation. 23

9. Intersection Operation 23

10. An Expert System 32

11. Global Planner vs. Intelligent Interoperability (7:639). 35

12. Nexpert Object Rule Structure 39

13. Nexpert Object Hierarchial Representation of Domain Information. 40

14. Nexpei-t Object's Knowledge Base/Relational Database Mapping. 42

15. Purchase Costs for Nexpert Object. 46

16. Required Red Nuclear Strike Aircraft 48

17. KB Classes for Automating Nuclear Strike Aircraft Replacement. 49

18. KB Rule Relationships for Automating Nuclear Strike Aircraft Replacement . .51

19. Decision Table for data-loaded 52

20. Decision Table for low .on..stk..ac. 53

21. Decision Table for rerole -atk -from-sa me-base -all 54

22. Decision Table for rt'rolea Ik-fromsamebase some 54

2:3. Decision Table for bring-xxtkxxac-from -aug-ab.-all 55

24. Decision Table for bring-atk-ac-from -aug.ah-some 55

25. Classes for Automating Aircraft Beddown. 63

Vii

Figure Page

26. KB Rule Relationships for Automating Aircraft Beddown 65

27. Decision Table for data-loaded 66

28. Decision Table for looking-forbest-ac 66

29. Decision Table fnrget-possible-sites 66

30. Decision Table for looking for-best-base 67

31. Decision Table for move4planes-to-base 68

32. Decision Tab!e for move -all planes-to-base 68

33. Decision Table for movesome-planes-to-base 69

34. Decision Table for check -for-new-ac-needed 69

35. Decision Table for check for-new-base needed 69

36. Decision Table for move-regiment-to-base 73

37. Decision Table for check for-all-bases-used 73

38. Classes for Automating Logistics Movement 77

39. RB Rule Relationships for Automating Logistics Movement 79

40. Decision Tabie fur -',ta loaded 80

41. Decision Table for current-base-set 80

42. Decision Table for addPOLfrom supply-base 81

43. Decision Table for add-???? from supply-base-with -over 82

44. Decision Table for add_????_from-supply-base 82

45. Decision Table for looking-for-largest-overage 82

46. Decision Table for overages-sent-back 83

47. Decision Table for supply base-updated 84

48. Decision Table for readv vfor-next-base 84

viii

AFIT/GCS/ENG/89D-7

Abstract

The Theater War Exercise (TWX) is a five day, two sided, theater level, air-power

employment decision making exercise. The decisions required are typical of those that an air

component commander and staf.-wuuld make. TWX is a two-sided game where the blue team

is p'ayed by a student seminar and the red team is played by one or more dedicated Air Force

Wargaming Center personnel who attempt to provide a realistic red opponent.

Personnel at the Air Force Wargaming Center determined that too much time was

reJquired for a red player to render an effective game. Also noted was the divergent

background of the red players made it difficult to play a normalized game during multiple

seminars. The goal of this thesis was to evaluate existing software programs, determine

which would best serve as a platform for automating the red player, design a system to that

effect, and implement it.

It was determined that an integration of artificial intelligence and relational database

management systems would provide a flexible, innovative, and cost-effective approach for

automation. Nexpert Object, an expert system shell by Neuron Data, was chosen as the

software platform.

An object-oriented approach was used to determine the necessary structures for au-

tomating the planning section of TWX. This included the replacement of nuclear strike

aircraft, the beddown of aircraft from an augmentation base, and the resolution of logistic

shortfalls at each airbase due to attrition and movement of aircraft.

The creation of three knowledge bases resulted from the design phase using application

piototyping, which facilitated the need for constant changes to the rules in order to present

a system that acted in accordance with the desire of the red players. This new series of

ix

programs provided a means of lessening the red player's time involved with simp!stic, but

timc-consuming work and allowed them to increase their time on the sections dealing with

target selection and prioritization.

x

An Expert System for Automating Nuclear Strike Aircraft Replacement,

Aircraft Beddown, and Logistics Movement for

The Theater Warfare Exercise

I. Introduction

1.1 Background

The Theater Warfare Exercise (TWX) is a five day, two sided, theater le.el, air-power

employment decision making exercise. The decisions required are typical of those that an air

component commander and staff would make. These decisions, once made by the exercise

participants, are fed into TWX's air and iand battle simulation programs, which then simulate

the employment of the airpower strategy, doctrine, and warfighting principles inherent in

those decisions. TWX is a two-sided game where the blue team is played by a student seminar

and the red team is played by one or more dedicated Air Force Wargaming Center personnel

who attempt to provid, a realistic red opponent.

Fhe requirement for TWX o. iginated in 1976 when the USAF Chief of Staff directed the

development of "...rigorous courses of study instructing operators and planners in the threat

and application of force" (25:1). To accomplish thi; task, the Air War College conceptualized

a theater level, computer-assisted wargame that would serve as the capstone for its military

employment curriculum and meet the intent of the Chief of Staff's direction (22).

"rwx was originally programmed to run on a Honeywell H6000 mainframe computer, but

was later rehosted to a Digital Equipment Corporation (DEC) Micro Vax III microcomputer

environment via the the:is endeavors of Captain Michael Brooks and Captain Mark Kross

(6, 10). During this transition, TWX's structure was totally renovated from a flat file system

to a more portable and flexible program using the Ingres Relational Database Management

System RDBMS). Other thesis efforts continued to improve TWX by developing a new user

interface to r!place the use of hard copy devices for all inputs and outputs (10, 26). A gi aphical

interface to the wargame was introduced last year through the work of Captain Darrell Quick

(16). Ongoing enhancemants to TWX include porting the database to the Oracle RDBMS f'or

use on a SUN 386i workstation.

TWX is now played extensively by the Air War College at the Air Force Wargaming

(enter located at Maxwell AFB, AL. The Combined Air Warfare Course, the Guard/Reserve

Ar Warfare Course, and the Contingency/Wartime Planning Course began utilizing the

reLsouces of TWX in 1977. TWX was also incorporated into the curriculum of the Canadian

Forces Command and Staff College (1980) and the Royal Air Force Staff College (1983) as

%Ill. TWX is currently played over eighty times a year.

1.2 Problem Statement

The problem that now confronts TWX is the lack of manpower to properly supervise the

ov rall exercise and thoroughly simulate the red player. Due to the overwhelming number of

3z(:Tllars run concurrently, the personnel at the Air Force Wargaming Center do not have the

tUni to assimilate all the information given them for the next day's play. Red team players

,p1(,nd between five and eight hours a day inputting the next day's assignments. Specifically,

the wargaming center has requested the following:

" l)eveDop a system to free personnel from the computer interface task.

* Create a consistent and realistic opponent across all seminars.

" I-ovide a platform for evaluating seminars based on the strategies played by each blue

toeam.

2

1.2.1 The Computer Interface Task. The red team makes decisions at two different

levels. It should be noted that the red team uses blue terminology to represent its command

structure, thus simplifying thc computer-iueer interface. The first level of decision making is

that of the Commander, Allied Air Forces Central Europe (COMAAFCE), who with his "staff"

develops an air strategy to support the strategy of the theater commander, Commander in

Chief, Central Eu.ope (CINCENT), represented by the game director. The responsibilities

for AAFCE have been limited to logistics management, beddown of augmentation forces,

relocation of theater air forces, and rerolling of theater air forces.

The next level of decision making is at the Commander and staff of the Second and

Fourth Allied Tactical Air Forces (COMTWOATAF and COMFOURATAF). At this level,

players implement the Air Directives (ADs) passed down from the AAFCE commander and

make decisions to ensure optimum use of their limited assets in meeting COMAAFCE's

priorities and specific objectives. Figure 1 presents the organizational chart used in TWX.

TWX is still paper-intensive, utilizing massive amounts of computer printouts and a

computer terminal to input user responses taken from hand-written worksheets. Players

must manually review and analyze numerous computer-generated reports in order to plan

their next day's strategy. Fifty to eighty percent of the red team's time is spent examining

these reports and filling in spaces on a complex set of worksheets to be entered into the

computer when all decisions have been made.

1.2.2 A Consistent and Realistic Opponent. There are currently twenty company grade

and field grade officers serving at the Air Force Wargaming Center as red opponents for TWX.

After being instructed by one oi the senior players, a new member is allowed to develop his

or her own strategy for successfully completing the five day seminar. This potentially allows

twenty different versions of the game to be played concurrently. Thus while one blue team is

thoroughly beaten, another might capture Moscow. There is a need for a consistent player

3

Central Region Command & Control

ACE

II
AFCENT

AAFCE C

ATAF lle Tcicl AirF

E

TWX Player Roles
L - - - - - - - - -

AAFCE - Allied Air Forces, Central Europe

ATAF - Allied Tactical Air Forces

Figure 1. TWX Organizational Chart for Blue and Red Players

4

whose red strategy is based on known Soviet tactics and doctrine and is not biased by the

training and culture of the human opponent.

1.2.3 A Platform for Evaluating Seminars. At the end of a five day seminar, the red

teams report to the blue teams they played against. The blue teams are then briefed on how

well or how badly they played against their red opponent. Unfortunately, there is presently

no way to grade the blue teams against each other since they were not exposed to the same

red strategies. A platform that can evaluate blue strategies would help resolve this problem.

Given a blue strategy, numerous red game plans could be tested in order to find which

produced the best results. That plan could then be used against the blue team. Conversely,

multiple blue strategies could be played against the same red strategy and graded according

to how well they met their objectives. Students could then see which team was best prepared

to meet the red strategy presented.

1.3 Proposed Solutions

Automating the red player from simply a software point of view has many obstacles.

1. The are many solutions. It would take too long to examine each one.

2. The problem solving expertise is conceptual and cannot be reduced to "numbers".

3. The information needed is incomplete, uncertain, subjective, inconsistent, and subject

to change.

4. The conclusion reached will often be uncertain.

5. Experts may disagree on how to solve the problem.

6. The task is always changing and evolving (24).

5

Tho above problems tend to point out that a conventional software approach is not

advisable, but that a system built using artificial ini.eiiigctice (AI) might be a better one.

Expert systems programs emulate the problem-solving processes of human experts through

the use of Al techniques.

The use of expert system shells requires that key knowledge concepts and problem

solving strategies are identified by one or more experts from the field. Red players from

the Air Force Wargaming Center were interviewed in December 1988, since they were

acknowledged as the known experts for planning and executing red strategy for TWX. From

their ideas, a basic requirement was derived. All players wanted to see the AAFCE phase of

TWX fully automated, but wanted the ATAF p'.ase only partially automated.

Due to the complexity of a database/expert system link the scope of the initial problems

was narrowed to meet the demand of the red players: fully automate the AAFCE phase of

TWX.

1.3.1 Automating the AAFCE Phase. The general order of events for AAFCE is to

" collect statistics from the computer-generated reports

* maintain the strike generation level

" move aircraft in from the staging base

" rerole certain aircraft (if desired)

" ensure enough logistics are present at the airfields to accomplish the mission (23:3.6).

Since the computer has instant access to all reports there is no need to externally

generate hardcopies. All information can be maintain within the system and called upon by

the expert system through an interface with the database. The following is a priority list,

ordered by Wargaming Center personnel, for automating the above procedures:

6

1. Automate rerole of aircraft to maintain 15 strike aircraft per nuclear strike base.

2. Automate beddown of aircraft from staging base, taking into consideration: base damage,

shelters available, revetments available, type of aircraft already stationed on base, and

amount of available ramp space.

3. Automate resolving logistics shortfalls due to enemy attacks and aircraft arrivals.

It is the objective of this thesis to provide a vehicle for the red player experts to input

declarative goals and strategies that will achieve the requirements of the list above.

1.3.2 Automating the ATAF Phase. Targeting occurs during the ATAF planning portion

of TWX. Red players currently make target selections front a given priority list. After targets

are chosen, aircraft must be selected according to available types and missions needed to be

flown. Player time is constrained due to the numerous factors involved in making aircraft

selections. This results in not enough t;me being spent on following a realistic red strategy.

Meeting the following two objectives will greatly increase the time that can be utilized in

selecting proper targets and thus producing a more effective and realistic red opponent.

1. Allow the red player to select mission targets. Generate the necessary aircraft sor-

ties needed to assure a successful mission. This includes reconnaissance, defense

suppression, and electronic measures support.

2. Allow the red player to change aircraft selection when desired.

The realization of the above objectives has been assigned to a follow on thesis effort by

Captain Karl Kabanek.

1.4 Assumptions

The following assumptions were made concerning the work within this thesis:

7

* The Air Force Wargaming Center is satisfied with the current structure of the database

which resulted from the rehosting work of the TWX system.

* The Air Force Wargaming Center does not want a fully automated player for the TWX,

but requires a system that allows personnel to apply their time to more importants task

such as target selection.

* The Air Fo! ,,e Wargaming Center requires a system that is highly portable and flexible,

due to the -omputer hardware changes presently occurring at the center.

* The decisions made by the new system must be readily verifiable.

1.5 Apprc ich / Methodology

The approach taken for providing the above solutions is simply: learn the system,

analyze the requirements, design the new system, and implement the new system. In the

thesis proposal the following objectives were identified:

* Learn how to play TWX. Determine how red strategy is realized by interviewing senior

red players at the Air Force Wargaming Center and observing and questioning the red

play.

" Evaluate existing AI expert system shells in order to find one that provides an interface

to TWX's database, operates on the hardware platform that TWX is currently running,

and meets all functional requirements outlined by the first objective. An indepth

discussion on this objective can be found in chapter III.

" Design an autcmated red player with interjection by Air Force Wargaming Center

personnel at points determined by requests from the red players. The scope of the

design depends on the complexity of the rules needed to generate a realistic player

8

and the complcxity of implementing those rules. This will be further discussed in the

design-oriented chapters.

" Implement the design. This is encompasses testing and validation.

" Document the system with a user's manual and system integrator's handbook, containing

maintenance and installation procedures. These documents can be found in appendix A

and appendix B respectively.

During the literature review for this thesis, it was noted that only a general methodology

such as rapid prototyping, was advocated for designing a rule base system. Examination of

a previous thesis effort on the TWX user interface (26), showed that application prototyping

for software requirements analysis mapped very nicely into the methodology required for this

thesis. The following is a list of requisites for application prototyping and a brief explanation

why these assumptions are valid for this thesis.

1. All prerequisites are prespecified: Discussions with the Air Force Wargaming Center

provided general directions of what work needed to be accomplished. However detailed

requirements were not available. Also systems involving rule bases are never complete

when a requirement is first derived. Most rule bases evolve after hours of interviewing

experts and evaluating notes taken from those interviews.

2. Inherent communication gap: Communication of detailed requirements was hampered

by a lack of understanding by the user of the expert system shell's development system

and its capabilities.

3. Availability of tools for (Iuick building: Both the Ingres' and Oracle's database develop-

ment systems and Nexpeirt ()bject's Expert System Shell development system provide

the necessary tools for rapid prototyping. This is a must for knowledge based systems,

9

since a set of rules must be tested constantly to monitor how well those rules emulate a

human expert.

4. Active system required: The resulting expert system will be interactive with TWX

operators.

5. Rigorous approach is correct once requirements are known: Other more rigorous

approaches are applicable in different phases of the expert system development cycle,

such as functional decomposition and object-oriented design.

6. Extensive iterations necessary: New problems and decision changes always arise when

working with more than one expert on designing one set of rules for an expert system

(4).

Determining the suitability of application prototyping for this thesis was based on

evaluation of a number of factor's. The following is a list of the factors and description of a

type of system which is appropriate for application prototyp-ig.

1. System Structure: Interactive and large amounts of database transaction processing.

2. Logic Structure: Very structured components.

3. User Characteristics: Uncertain about detailed requirements.

4. Application Constraints: Development time available to perform iterations.

5. Project Management: Confidence in the development system to perform application

prototyping.

6. Project Environment: Prespecification difficult and capabilities unknown (4, 26).

Based on the above factors, the identified problems were good candidates for this

methodology.

10

1.6 Materials and Equipment

The equipment used for this thesis included one SUN 386i Workstation, one Zenith

386 microcomputer, the Ingres RDBMS software package, the Oracle RDBMS software

package, the Nexpert Object Al software package, and other software development tools.

All equipment listed was provided by the Air Force Wargaming Center. Source code and

documentation from previous thesis efforts were instrumental in understanding the current

wargame implementation and integrating the new system.

1.7 Sequence of Presentation

Chapter II is a detailed literature review of the current technology for integrating artifi-

cial intelligence and database management systems. This area of research was fundamental

in fulfilling the objectives of this thesis, since all data for TWX was stored in a relational

database and a necessary platform had to be found in order to integrate the database with an

Al development tool. Chapter III discusses the evaluation of Al expert system shells and the

criteria used to make a final selection.

Chapters IV-VI detail the analysis, design, and solution to each problem presented in

this chapter: automating the 3 major components of the AAFCE phase. Each chapter begins

with an introduction of the actual task involved.

Next the problem is analyzed using the software engineering principles for software

requirement analysis. The third section of these chapters discusses the solution to automating

each task. The discussion will include the software tools used and problems encountered.

The fourth and final section of each chapter will contain a summary and any recommen-

dations for further work in the ara.

11

Chapter VII completes the thesis with an overall conclusion and recommendations for

further development of the artificial intelligence/relational database management system link

in the TWX system.

12

If. Literature Review

2. I Introduction

The need for integrating Artificial Intelligence (AI) and database systems has been

evident since the two areas' very beginnings. Both Al and database systems need to manage,

access, and reason about large amounts of possibly shared information (13:1). Al's overlap

with the database field is the knowledge-base which contains a system's inferred knowledge

about a closed-world system. The key difference between knowledge-bases and other database

systems is the use of semantics. (See overview of Al below.) Databases can serve as the

virtual memory of an AI system, storing facts and reasoning states, while the knowledge-base

can contain rules and control the focus of attention. Database systems require a database

manager to provide an efficient and convenient interface between low-level data stored in

the database and the application programs and queries submitted to the system. The tasks

required of the database manager map well into the domain of AI where an Al system can be

used as means of performing reasoning, filtering, and other tasks dealing with queries.

The Theater Warfare Exercise involves the tracking and maintenance of numerous

aircraft as well as the bases within the theaters responsible for those aircraft. A relational

database was used as a storage facility for maintaining the structure of the data necessary

to conduct the computer exerciv'. A vehicle to automate portions of this exercise requires

the integration of database internals to their counterparts in an Al oriented program. This

chapter gives brief overviews ofAl and database systems. It then discusses the terminology

and three applications that illustrate key areas of integration within the two fields. Future

research projects are suggested ,ased upon research literature.

2. 1.1 An Oirerview of Artilicil Intelligence (AI). A generally accepted definition of Al

is as follows:

13

SPerson 2 Machine

Person 1

Figure 2. The Turing Test for Al

Artificial Intelligence is the part of computer science concerned with designing
intelligent computer systems, that is, systems that exhibit the characteristics
that we associate with intelIigence in human behavior - understanding language,
learning, reasoning, solving problems, and so on. (2:3)

Another approach to Al was proposed by Alan Turing in 1951 (21). The now famous 'Turing

Test" provides a means of measuring a machine's intelligence by placing the machine and two

people in separate rooms. One of the persons will then present a question to the machine

and the other human being. If the person asking the question cannot distinguish between

the computer's and the other person's answer, then the machine is acknowledged as having

artificial intelligence. See Figmnur 2.

Inference is one of the major keys to Al. It is the process of creating explicit representa-

tions of knowledge from implicit ones. Most cases involving Al assume that the knowledge

contained in their respective databases and any knowledge inferred by that data represents

all the known information at)ut the system. This is a closed-world system. If the information

about a system does not exist in a database or it cannot be inferred then it simply does

not exist. This assumption cin be quite disasterous when applied to the wrong kind of

problem. Therefore Al systems such as Rule Based Expert Systems must be limited to those

applications that can be mapped to a closed-world system.

14

Helen ffrdslto

Figure 3. A semantic net for "Helen offered Bill a solution."

A promising field in Al is semantic networks. Semantic networks were first devxAoped to

represe~it the gi ammatic structure within sentences in terms of objects and their relationships.

This object oriented approach is (esirable since it is more effcient to represent each object

once and use cross-pointers rather than duplicate the object explicitly every time it is involved

within a relation. In theory semantic networks are as powerful as the predicates in predicate

calculus. Unfortunately the primary use of semantic networks is providing a graphical

depiction of knowledge and not an actual implementation.

A semantic network is a labeled direct graph where both nodes and edges may be !abeled.

fhere are four types of nodes: concepts, events, characteristics, and value-nodes. Concepts

are the essential parameters of a modeled world and relate to physical or abstract objects.

Events are used to represent actions within a world. Characteristics are used to represent

states or to modify concepts, events, or other characteristics. A characteristic is similar to

binary relation mapping nodes to which a characteristic may apply to a range of values that

a characteristic may take. Vale nodes represent the values that characteristics may take.

Figure 3 shows a typical seninntic net from (20:117). Other shortfalls concerning semantic

networks are that a standard does not e-:ist and reasoning methods are not provided. A

database approach using semantic; will be discussed in section 2.2.

15

Frames are another key structure in A. A frame is a collection of knowledge relevant

to a particular object, situation, or concept. Generally there are many pieces Lo a frame and

many frames to a knowledge-base. A frame provides representation of an object in terms of

a set of attribute names and values for the attributes. A frame is somewhat analogous to a

"record" data type in PASCAL or 'C'.

When surveying AI knowledge representations, relationql databases are considered to

be highly efficient in handling data. Relational databases provide useful transformations

such as selection, projcction, and joins. These operations may be used in connection with more

powerful inference methods (such as resolution in predicate calculus) to attain a combination

of intelligence and efficiency in a knowledge-based system (20:124-127).

2.1.2 A Brief Overview of Database Systems. There are three classic models in the

database arena:

" The Ilierarchial Model

" The Network Model

" The Relational Model

The hierarchial and network models are the elders and are tied more closely to the underlying

implementation of the database than is the relational model. These are a few reasons

why the relational model is ncw tue fastest growing commercial model of databases. Over

300 relational DBMSs are now being sold for virtually any type of hardware platform.

The relational database relies heavily on its management subfunctions for interaction with

its secondary storage, integrity enforcement, security enforcement, backup, recovery, and

concurrency control.

The relational database con.sists of tables which represent a relationship among a set

of values. These values or atti,iiutes together represent a unique relationship within the

16

Ship-Id Ship-Name Ship-Captain No-of-Crew
NCC-1701 Enterprise Kirk 305
NCC-1704 Constellation Patrick 305
NCC-1706 Intrepid Riley 325

Figure 4. Relational Database Table

database. These tables map very nicely into Al structures, facilitating the transfer of data

from a database to a program that can apply Al reasoning methods. A sample table is shown

in Figure 4.

Another aspect of relational databases that must be acknowledged is query languages.

These procedural or nonprocedural languages are the keys to a database's internal structures,

allowing users to retrieve, modify, and store data. Structure Query Language (SQL) was

developed a3 a query language for System R (1). SQL consists of three major clauses: select,

from, and where. The select clause is used to list the attributes desired from the result of a

query. The from clause is a list of a relations to scanned during the execution of a query. The

where clauses is the selection criterion upon which the query applies itself. SQL or one of its

contemporaries today plays an important role in connecting an AI program such as an expert

systam to a database.

There have been many proposals and implemented systems for coupling a logic pro-

gramming language (such as Prolog) with a relational database. These systems are broken

into two categories:

* Loosely-Coupled Systems

" Tightly-Coupled Systems

Loosely-coupled systems regard the external DBMS and the logic programming language

as communicating through an intirface. For example a rule may be compiled into a relational

algebraic program defining a view. A goal in the logic program triggers retrievals from

17

the DBMS. In these loosely-coupled systems, the granularity and efficiency of the spanning

interface is crucial to performance. Loosely-coupled systems are comparable to what has been

successfully done with 'C' coupled to Ingres.

Tightly-coupled systems make little or no distinction between the logic programming

language and the DBMS. Two basic strategies have been advocated: either extending the

logic programming system to provide features such as security, data integrity, user sharing,

concurrency, and backup and recovery.; or extending the DBMS to handle logic variable,

structures, and deduction (14:108). However, both strategies have been found to be extremely

difficult and many companies have simply decided to build loosely-coupled systems.

2.2 Applicaticns

The number of applications integrating AI and database systems is rapidly growing.

Since 1975 the interaction between the two areas has broadened and become more systematic

(5:12). Numerous workshops, symposia, discussions, and survey papers have addressed the

need for more research into the combined fields. In 1983 a survey by Jonathan King published

in the SIGART newsletter listed over 30 research projects focusing on Al and database system

interaction. This chapter looks at three primary areas and their impact on the the two fi dds

they are bringing together.

Scetion 2.2.1 discusses the work presented by Nicholas Roussopoulos and John Mylopou-

los at the first Very Large Datab..e (VLD9) Conference. The paper propoged using semantic

networks for conceptual descriptions of the contents of a database. It is one of the first research

endeavors to advocate the wholesale use of Al techniques in a database management system.

Section 2.2.2 explains the implenentation of the knowledge-base, Krypton. An example is

provided to help illustrate how it works. Section 2.2.3 reviews the internal components of an

expert system and briefly discusses a new expert system shell called NEXPERT Object.

18

2.2.1 Semantic Networks for Database Management. The usefulness of Database Man-

agement Systems (DBMSs) is severely restricted by their failure to take into account the

semantics of databases (17:112). Some of the more specific problems are listed below:

(1)What do attributes and relations mean? In order to use a relation or attribute a user

must know what they mean.

(2)How do we choose a relational schema for a particular database? The concept of

functional dependency is not adequate enough for expressing semantic relationships that

exist between items that make up a database.

(3)When do database operations make sense? There are many semantic pointers that

can be used to decide whether ,j not an operation makes sense. This expands operational

control beyond simple cost and security constraints.

(4)How do we maintain database consistency? With the semantics of the database

excluded from the relational model the effect insertions, deletions, and updates have on

the database is only understood by the user in terms his/her subjective view of what the

information in the database means. Thus consistency becomes a subjective notion and this

can easily lead to its violation (17:134-136).

2.2.1.1 Semantic Network Integration. The best way to understand semantic

integration within a database system may be through an example. Assume two companies;

one company makes a part that is used by the other company. The following diagram shows a

semantic network depicting the above relationship. When describing certain characteristics

such as the price of a part, a "with-respect-to (wrt)" edge is used to show mappings from a

cross-product domain to a range. In order to provide a price for part #7305 this must be

mapped with a certain supply company since different companies have been know to market

goods at different prices. This mapping produces a value node. See Figure 6.

19

source .destination

Figure 5. A semantic net for Companyl and Company2

characteristic

Figure 6. WRT Mapping of Company2 and Part #7305 to a price

20

There are four types of characteristics, depending on the relation defined between the

domain and the range of the characteristic (ch - characteristic, v - value):

PERSON = ch = ADDRESS = v = ADDRESS.VALUE (Many-to-Many)

PHYSICAL.OBJECT < ch = WEIGHT - WEIGHT.VALUE (Many-to-One)

PERSON - ch - POSSESSION = v = PHYSICAL.OBJECT (One-to-Many)

PART -ch - PART#- v - PART#.VALUE (One-to-One)

Thus a person can have several addresses and at the same time several persons may have

the same address, each physical object has a unique weight but a weight cannot be associated

to a unique physical object, a physical object is possessed by a unique person, but a person

does not possess a unique object, and finally, a part has a unique part number and each part

number is associated to a unique part (17:115).

2.2.1.2 Semantic Operators. Semantic operators are operators that take as ar-

guments (operands) one or more nodes of a network and construct a new node or nodes

related semantically to those from whom it was obtained. Sinct. sume nodes on the net

have associated relations or attributes of the database, a semantic operator may have a

corresponding database operation. It is important to stress, however, that the starting point

for the definition of operators is the semantic net and not the database. The following are

three semantic operators that have corresponding database operators. Examples are from

(17:128-132).

(1) Selection. The semantic operator of selection on a node n consists of creating a

new subnode "below" n which has more restricted properties than node n. For example, the

21

v

PART# PART#.VALUE

PART1

WEIGHT v WEIGHT.VALUE

PART2 c WEIGHT v WEIGHT VALUE

argl 1 101 lbs

GT arg2

Figure 7. Selection Operation

expression 'parts which have a weight greater than 101 lbs.' operates on node PART1 and

results in node PART2 of Figure 7.

(2) Union. Union operates on two nodes ni and n2 and result in the node nr which

" is "below" every node n that is "above" n1 and n2

" is "above" nl and n2

" inherits all common characteristics and/or cases of n1 and n2.

For example, 'cases of supplying auto.parts.made.by.ford carmed out by honest.ed or sears

with bad.boy as the destination' operates on the two SUPPLY1 and SUPPLY2 nodes in Figure

8 and results in node SUPPLY3. (Note: a - agent, d - destination, o - object, and s - source)

(3) Intersection. Intersection operates on two nodes n1 and n2 and results in a new node

nr which

" is "above" every node that is "below" nl and n2

" is "below" n land n2

22

! • | ! |i

d/ ad.boy

as0

SUPPLIER SUPPLY3 AUTO.PARTS.MADE.BYFORD

auto.part .de.by.f rd auto.parts.mad byford

0 0 0

sears SUPPLY2 honest.ed SUheLYi

d d
bad.boy bad.boy

Figure 8. Union Operation

date.value

DATE

a,s ch ch ch
PROJECT ORDEW-- PA T3 P 4 chSS SPLE

QUtNTIT p A c QUtqTITY- .

quantity.value quantity.value

order PART5 possess

Figure 9. Intersection Operation

9 inherits all characteristics and/or cases of n1 and n2.

And the last example, 'parts that have been ordered by some project and possessed by some

supplier' operates on nodes PART3 and PART4 of Figure 9 and results in the new node PART5.

The description of the above semantic model is by no means complete. Research still

needs to be done in establishing that the association of relations to the basic building blocks of

the semantic net (concepts, events, and characteristics) is adequate, that the set of semantic

23

operators proposed is in fact sufficient, and that consistency, integrity, cost and security

constraints have been met. Where this model might fall short in accomplishing these goals,

it sets a very nice foundation for solving them in the near future.

2.2.2 Knowledge-Bases. Several database models allow the expressing of simple facts

such as "Sinitl, has an account at the Centerville Branch." However, we are not able to make

use of more complicated facts or rules such as:

" All accounts are either passbook saving accounts, checking accounts, or money market

accounts.

" Passbook saving accounts pay 5 percent interest.

" Checking accounts have a $5 per month fee.

" Checking accounts pay 5 percent interest if the monthly balance is over $1000; otherwise

they pay no interest.

" Money market accounts pay 8 percent interest if the balance is over $2500; otherwise

they pay 6 percent interest.

Rules such as these may be used for consistency constraint by transactions in the database,

but in general they are not used by the DBMS to speed up queries. In fact they may never

explicitly be defined within the database.

Consider the query "Find all money market accounts that pay 15 percent interest." If

the system could use the fact that all money market accounts pay 8 percent interest, the

system could conclude that the answer to the query is the empty set without ever accessing

the database (9:474).

Rules are important since they can be used to answer queries that cannot be expressed

in standard database queries. In regular databases only information about facts can be

24

accessed and manipulated. The key to knowledge-bases is that they may be queried to obtain

meta-data or data about data.

2.2.2.1 Knowledge-Base Architecture. A knowledge-base (KB) consists of two

parts:

" A set of rules

" A collection of data or facts

The "collection of data" is actually a small database and like most databases it must have a

manag ment system. Thus there is need for a knowledge-base management system (KBMS).

The KBMS's primary goal is to "manage" the knowledge resources of a collection of KB

applications (e.g., all those of an organization). It also uses unified control schemes for

consistency, semantics, and knowledge content (ie. what knowledge resources the KBMS has)

as well as checks for redundancy, reliability, and security (12:37). The KBMS is assumed to

actively cooperate in the problem solving process.

Early KBs were sufficiently small to fit within a system's main memory and performance

was not a main concern. However, the need for more sophisticated KBs has arisen in the

last few years. Many new requirements have been place upon KBs and their management

systems:

(1) Large Knowledge-Bases. KBMSs must acknowledge that they must deal with a large

amount of facts in order to model the real world. Also knowledge for individual components

cannot always be formulated concisely (e.g., a small set of rules). It is quite possible that a

KBMSs will have to manage more that one set of KB components. This would result in large

"central" KBs.

25

(2) Heterogeneous Knowledge-Bases. In typical DBMSs interfaces for multiple program-

ming languages, query languages, report writers, etc. are needed. KBs are being developed

to provide access to multiple-knowledge-representation languages and systems.

(3) Knowledge Sharing. Knowledge sharing is necessary for a query optimizer to plan

access strategy or prestage data the user is likely to ask for next.

(4) Multiple Data Types. Processing of normal formatted types as well as spatial data,

imagery, signals, etc. is now required by KBs. The KBMS must now handle different types

of processors and their associated storage devices to retrieve and store these complex data

types.

(5) Communication Between Components. There must be a flexible and efficient commu-

nication facility to allow the necessary flow of information between rules and data.

(6) Integrated I/O. Effective presentation is required of information by the system as a

whole. It may be necessary to present results from several KB components at the same time.

The above constraints can be related to input as well.

(7) System Modularity. A KB is naturally going to grow with the addition of new

components, data types, and processors. It is important that each new component not have to

contain excessive information on existing components.

(8) Self-Understanding. Most KBs are becoming large and complex. The system should

have the ability to explain the criteria for its decisions to the user in a manner that can be

easily understood.

(9) Parallelism. Several system components may need to execute in parallel. For

example, the processing of sensor data must take place in parallel, as well as the support for

queries and continuous displays necessary for the smooth operation of the system.

26

(10) Component Adaptability. Some components must be specialized for oarticular

operations. However, general-purpose components that can be used in multiple environments

are more desirable.

Further discussion on the architecture of KBs can be found in (12).

2.2.2.2 Krypton -An Example Knowledge-Base. Krypton is a hybrid system with

two main components, one that specializes in assertional reasoning (the ABox), the other

in terminological reasoning (the TBox). Each component has its own language and its own

inferencing mechanism (3:294). The ABox language is first order predicate calculus, while

the TBox is a special purpose frame-based language of descriptions. The heart of Krypton is

the connection between the two components: predicates used in the ABox are actually defined

in the TBox. Thus all the analytic inferences computed by the frame-based TBox must be

available for consumption by in the logic-based ABox (11:23).

The language currently implemented in the TBox has two main categories: concepts

and roles, corresponding to one-place predicates and two-place predicates (binary relations)

respectively. These are inter-defined by the following BNF grammar:

(concept) :: (1 - predicate - symbol)

I(ConGmeeric (concept)l . .. (concept),) n > 0

(VR.Generic (con cept) (role) (concept))

(role) :: (2 - predicate - symbol)

I (IolhCliain (rol)l ... (role),,) n > 1.

27

The ABox language is that of a function-free predicate calculus. The grammar is as

follows:

(wff) ((k - predicate - symbol) (var)l ... (var)k), k ? 0

1 (NOT (w ff))

(OR (wff))

(EXISTS (rar) (wff)).

Note that one- and two-place predicates symbols are both terms of the TBox language

and components of the ABox language. To make this intersection explicit the following terms

are defined:

(T'Box - symbol) (1 - predicate - symbol) I (2 - predicate - symbol)

(ysymbol) ::= (k - predicate - symbol) k > 0

(gtern) (gsymbol) I (concept) I (role)

So gterms, as they will be understood here, are either predicate symbols or composite TBox

expressions and each gterm has an associated arity (1 for concepts, 2 for roles, and k for each

k-place predicate symbol). One final definition describes the mapping of gsymbols to relations

of the same arity over the same domain.

Let D be any set. Let E be any function from gsymbols to relations over D such that E(s)

has the same arity as s. Then for any gterm e, the EXTENSION of e wrt E by

(1) The extension of any gsymbol s is E(s).

(2) the extension of (ConGeneric cl .. Ck) is the intersection of the extensions of c,, and

D if k is 0.

28

(3) The extension of (VRGeneric e r c2) is those elements x of the extension of e such

that (x,y) is in the extension of r only when y is in the extension of :2. For example the

extension of (VRGeneric Person Child Doctor) would be the elements of x of the extension

of Person such that any y such that (x,y) is in the extension of Child is also in the extension

Doctor; that is, the above complex term stands for those persons whose children aie all

doctors.

(4) The extension of (RoleChain ri . rk) is the relational composition of the extensions

of r, • rk.. For example the extension of(RoleChain Child Child) is the set of all pairs (x,z)

such that for some y, (x,y) is in the extension of Child and (yz) is also in the extension of

Child; that is, the expression stands for the Grandchild relation.

To facilitate the above definitions an example is necessary. The following information is

known (ie. stored in the 1knowledge base):

" TBox Definitions:

Primitive Roles: Child

Primitive Concepts: Mammal, Thinker, F'emale

Define Concepts:

Person (ConGeneric Mammal, Thinker)

NoSon (VRIGeneric Person Child Female)

" ABox Definitions:

Child(Fred, Pat)

Child(Mary, Sandy)

NoSon(Fred) V NoSonCMary)

With the facts above, we should be able to show that there is somebody in our defined

world who is a Person and has a Child that is a Female, even though we don't know who

that sornebody is. This query is formulated using predicate calculus as Thry~4I(r...uu(') A

29

hil(.. y) ,\ Fe eelr(y)]. The intuition behind this proof is that if Fred and Mary both hav

children then at least one of them is a NoSon, and whoever is the NoSon is himself/herself a

Person and has a child that is Female. That either Fred or Mary is a NoSon is insufficient,

since the definition of NoSon does not require that a person have a Child, but only that if

he/she has a Child, then that Child is a Female. The query above is proven true by refutation.

The proof by refutation proceeds by trying to derive a contradiction from the known facts

and the negation of the theory. Lines 1-3 are the known ABox facts that will be used in the

proof. Line 4 is the negation of the query.

1. Child(Fred, Pat)

2. Chiid(Mary, Sandy)

3. NoSon(Fred) V NuSon(Mary)

4. - I cr.(i) v -C'hild(x, y) V -'Fciualc(y)

5. - terson(Ired) V -Fcnalc(Pat)

Normal resolution on 1 and -Child(Fred, Pat) in 4.

6. -lP rswe(Fred) V NoSon(AMary) V -'Child(Fred, Pat)

By 3, Fred is possibly a NoSon, which means that all his children are Female. Stating that

Pat is not Female in 5 has the consequence that Pat cannot be Fred's Child. In other words,

NoSon(Fred) in 3 and -Female(Pat) in 5 resolve away and leave a residue of -'Child(Fred,

Pat).

7 Plrrs,,n(Irrd) V NoSo (,Wa! rry)

Normal resolution on 1 and -'Child(Fred, Pat) in 6.

8. NoSon(Mary)

By the definition of NoSon, if Fred is a NoSon then he must also be a Person, so -'Person(Fred)

in 7 and NoSon(Fred) in 3 are directly contradictory.

30

9. -'Child(.1lary, y) V -FFenale(y)

This time, if Mary is a NoSon, she must be a Person, so 8 and -Person(x) in 4 are directly

contradictory, with Mary being substituted for x in the resolver.t.

10. -C'hild(M ary, y)

If Mary is a NoSon (as stated in 8), any children she might have must be female. Therefore if

there are no Females at all as stated in 9, then Mary must have no children. In the case the

residue, -'Child(Mary, y) was already part of the resolvent of 8 and 9, so it does not have to be

added again.

11. False.

The final result comes from the resolution of 10 and 2. As you can see it was the result needed

as stated above.

2.2.3 Expert Systems. An expert system attempts to emulate the reasoning of a human

expert in some knowledge domain. It does this by using facts stored in a database and rules

in a knowledge base. The rules are usually statements in logic and are expressed typically in

the form of an if-then predicate, such as ifpersonl is the son of person2 and person3 is the son

of person2 then person 1 is the brother of person3. Of course this assumes there have not been

any recent divorces in person2's history. A typical expert system in illustrated in Figure 10.

A frequent application of expert systems is problem diagnosis. Given a set of symptoms,

the rules allow conclusions to be reached about the nature of the problem (9:475). MYCIN, a

medical expert system, allows doctors to use computers as advisors in diagnosis and treatment

of illnesses (18). The response an expert system gives to a user may be a question and not

a fact. For example MYCIN might ask for more information about a patient such that the

responses are likely to assist it in applying additional rules and thus obtaining a better

diagnosis.

31

Control Scheme

Condition Action

Condition Action Database of

O O State Information

O 0

o 0

Condition Action

Rule or Knowledge Base

Figure 10. An Expert System

Most expert systems can find an answer to a query through the use of forward-chaining.

Forward-chaining applies a given set of rules to a database; when the "if" section of the rules

returns true, the "then" section is fired modifying the database accordingly. After all rules

that can be invoked are used, a control procedure checks for a goal state. If a goal state is

found it is returned to the user. The goal state for MYCIN would be a diagnosis to a set of

symptoms. Since an expert system finds answers to a query through forward-chaining, it can

explain how it reached a given conclusion by reasoning backwards. More generally it is a

list of the rules that were applied in order to reach the answer or goal state. This means an

expert system is not only a query processor, but it is also a collaborator.

Expert systems today use external databases for the storage of facts. This requires

that the expert system submit queries in languages such as SQL and await an answer from

the database system. This implementation is used not for its efficiency, but for its ease of

32

use. It is not an optimal design since the rules in the knowledge base are not accessible for

processing by the database. Also in the likely case that the expert system poses a series of

related queries, the database system cannot take advantage of the similarity of the queries

and must process each one individually.

2.2.3.1 NEXPERT Object - An Expert System Shell. Neuron Data's NEXPERT

Object is a classic expert system shell in that it hides the underlying source code and only asks

the builder to choose from the available options for inferencing methods, end-user interface,

and control schemes. The builder supplies the knowledge base through the shell's interface

using the shell's format for objects and rules. NEXPERT Object was developed under the

premise that the domain expert should be the one directly operating on the shell without the

intermediary of a knowledge engineer. To that end, emphasis has been placed on ease of

use and understanding. A major asset of NEXPERT usually seen only on Lisp machines is

a display of rule and object networks. The object network browser allows users to examine

all the interelations between an object and the subobjects of which it is composed, as well

as the properties that it can possess. Likewise, the rule network browser allows you to see

every logical link between rules. The browsers are quite flexible and can display the networks

either deductively (as a backward chain) or evocatively (for contextual relationships) (19).

NEXPERT Object allows applications to communicate directly and dynamically during

the inference process with databases such as Oracle, Ingres, Informix, and DBASE III. Direct

interfaces to these databases is integrated into NEXPERT. Users can now relate information

in external databases and objects in a NEXPERT application. This is an example of a

loosely-coupled system.

There is also a runtime library that allows NEXPERT to use any outside programming

language to execute data manipulation. Its finest attribute is that the software created by the

expert system shell can be run on virtually any type of machine without having to be edited.

33

This means that a product created on a SUN workstation can be run on a DEC Vaxstation,

an IBM PC AT, or an IBM mainframe computer.

NEXPERT Object is used in solving a wide range of tasks such as: Classification,

Troubleshooting, Maintenance, Simulation, Design, Testing, Planning, Scheduling, Intelligent

Assistant, Data Structuring, Software Engineering, and many other applications. It is now

used in over 60 companies and universities in the United States and in 11 other countries. It

is one of the leading expert system shells available on the commercial market today.

2.3 Summary-Where Do We Go From Here?

Future computing will require the integration of many currently disjoint technologies,

including Al, databases, programming languages, operating systems, heterogeneous dis-

tributed systems, and communications (7:638). Al will be necessary for handling specialized

domains and for helping unique programs cooperate. Databases will be required to manage

and provide access to many different types of data including rules, programs, or any other

type of software object that might be created in the future.

The advance from DBMS to KBMS will probably be followed by the creation of the

OSMS or Object Space Management System. Michael Brodie describes the OSMS as

managing shared objects on any system in an attached network. The key objective of the

OSMS is intelligent interoperability. Most computer systems today are disjoint such as

a database and knowledge-base or they use an ad hoc interface to communicate with each

other. With object-oriented approaches now becoming the main-stream methodologies of

engineering, there is hope that an encapsulation of systems might be possible, thus producing

general-purpose mechanisms or protocols for interoperability. The optimum use of such a

connection would require tasks such as resource planning, allocation, execution, monitoring,

and intervention between the two systems. This leads to the notion of a resource manager

34

GP -Global Planner

Intelligent
Interoperability

Figure 11. Global Planner vs. Intelligent Interoperability (7:639)

or global planner. The final step in intelligent interoperability would be to distribute the

global planner's functions among all sharers of the network. Each user of the network would

have to apply to their resource manager who in turn would find the resources necessary for

execution, even if those resources were heterogeneous. Figure 11 shows the relationship

between a global planner and intelligent interoperability. This vision requires the extension

of database technology to general-purpose resource management and of Al technology to

support distributed cooperative work. The vision relies heavily on Al and database systems

integration.

35

This chapter has presented an overview of Artificial Intelligence and database systems

integration. It has given a brief overview of both AI and database systems terms. Semantic

networks and DBMS integration was discussed as well as the knowledge-base example,

Krypton. Finally expert systems were exemplified by the product NEXPERT Object.

36

HI. Evaluation and Selection of An Expert System Shell

3. 1 Criteria for Selection

Before implementing any type of hardware/software combination, a best fit scenario

should be given serious consideration. Unfortunately in the real world, the criteria for

selecting that ideal combination is plagued with conflicts. Therefore the selection of a system

is determined by a series of compromises that facilitate those i equirements which cannot be

modified or ignored.

The criteria for selecting an expert system shell for this thesis were the following:

1. Portability of the shell

2. Representation scheme available in the shell

3. Developmental and delivery environments of the shell

4. Features available in the shell

5. Total cost of the shell

Based upon the preceding criteria, Nexpert Object by the Neuron Data Corporation was

selected as the expert system shell to be used. The rest of this chapter examines in detail how

Nexpert Object met or exceeded the above criteria for selection.

3.2 Portability

Ideally, a software tool should be able to satisfactorily deliver an application across the

entire spectrum of hardware platforms utilized within the working environment. TWX is

currently running on IBM PC compatibles and a DEC Microvax III. Future versions will run

on SUN 386i workstations. Each system has a different central processing unit (CPU) and

operating system to support the CPU. In order for an expert system shell to be effective in

37

automating portions of TWX, it has to be able to port to all three hardware platforms with

only minor changes at the user interface program level.

Nexpert Object is written in 'C'. This makes it portable to a wide variety of machines,

including PC AT compatibles, DEC platforms running VMS or ULTRIX, SUN workstations

running BSD UNIX, and Apple computers like the Macintosh. The knowledge base created

by Nexpert Object is stored in an ASCII format thus allowing execution of the knowledge base

on a significantly different computer by simply transferring the file.

3.3 Data Representation

Three basic inference engine types are widely used today: induction, rule, and frame.

Out of the three, the rule-based system is easier to understand and therefore easier to

implement. Rule based tools use a treelike representation to create symbolic structures which

express deductive and e- -,,ive progression in a reasoning path. The general format for a

rule is:

if...then ... and do...

where if is followed by a set of conditions, then by a hypothesis or goal which becomes true

when the conditions are met, and do by a set of actions to be undertaken as a result of a

positive evaluation of the rule (15:2.7).

Rules are the structures wherein reasoning takes place on a representation of the

problem domain. This representation is made of interrelated objects. TWX consists of

numerous objects such as aircraft and airbases on which decisions are made in order to

maximize the number of fighter sorties generated. A expert system shell must be able to

represent these objects and categorize them in to classes according to their shared attributes

or properties. The following is a generic form for the hierarchial representation of information

38

IF..

conditions

THEN...
3 [I hypothesis

and DO... actions

Figure 12. Nexpert Object Rule Structure

in a knowledge base:

OBJECT = Name... Class(es) ... SubObject(s) ... Properties ... MetaSlots...

Nexpert Object is a hybrid system that supports both a rule-based reasoning system

and a powerful object-oriented representation scheme. Rules are divided into two parts,

the Left-Hand-Side (LHS) and the Right-Hand-Side (RHS). The LHS is where conditions

are expressed and the RHS contains the hypothesis and actions of the rule. (See Figure

12,) Nexpert uses a hierarchial representation of domain information. Classes, objects and

properties are the structures of that representation. Classes can store information relevant to

all their objects and the object can inherit this information when necessary. Classes provide

a way to look for objects meeting a specific condition in well-defined groups or clusters. This

mechanism is called pattern-matching. Consider the following condition:

Is < AIRCRAFT > .acname M23

39

PROPERTY1

PROPERTY2 CAS

OBJ 1 OBJ 2 OBJ 3 OBJ 4 OBJ 5

Figure 13. Nexpert Object Hierarchial Representation of Domain Information

This line translates into, "is there any airplane in the class 'AIRCRAFT' that has the

name 'M23'. The brackets around AIRCRAFT denote a pattern-matching condition. The

conventional way to graphically represent classes and objects are with circles and triangles.

(See Figure 13.) All objects in CLASS1 have the properties, PROPERTY1 and PROPERTY2.

This is an example of inheritance. Each object may have other properities.

3.4 Developmental and Delivery Environments

An expert system's inference engine may well be highly effective and efficient, but if the

interface between the program and the user is not, the latter's results are visibly weakened.

A shell must be able to present its output in a legible and understandable form. Entering

of rules, objects, and their relations must be straightfoward and allow for modification and

deletions. The delivery environment of a expert system shell is what a end user will see when

an application is interfaced to the completed knowledge base. Generally this is a textual

program that simply outputs the results of the inference process, but may produce graphs,

informational screens, or printed output.

40

Nexpert Object utilizes a dynamic windowing environment for its developmental system.

The actual user interface depends upon the computer system on which Nexpert resides.

Nexpert Object currently uses Microsoft Windows for its IBM PC versions and X Windows for

its SUN and DEC versions. The Knowledge Design Environment (KDE) for Nexpert consists

of interactive knowledge agents which enable the creation, edition, modification, and display

(both textual and graphical) of knowledge and its structure.

The knowledge editors which constitute the KDE are the rule editor, the context editor,

the object editor, the class editor, and the property editor. Each tool is independent of the

other, and can be called at any time, allowing the system to immediately take into account

any modification to the knowledge base. Knowledge editors are accessed through menu bars,

pop-up menus, or control-key commands. No matter where the user is in the development

process, the KDE can be called up instantly (15:3.1).

Nexpert Object's delivery environment is found within its Runtime Library. This

package allows the knowledge base to be accessed by external programs written in C, Pascal,

Fortran, or any other type of procedural language (Embedded Coding). A knowledge base

written on one machine can then be run on numerous hardware platforms different from the

one in which it was developed. Nexpert can also be linked to relational databases such as

Oracle and Ingres, via built in functions for database access. This is a key component in

today's expert systems since intelligence requires perception and action. A knowledge-based

application must be able to connect with large amounts of data to be processed and updated.

Figure 14 shows how Nexpert Object links knowledge base objects and relational database

tuples.

This was a high priority consideration in selecting an expert system shell since TWX

data would be entered and modified directly from its database.

41

Attributes

Record X -Y

Table

Relational Database

Properties

Object X
Y

Knowledge Base

Figure 14. Nexpert Object's Knowledge Base/Relational Database Mapping

3.5 Shell Features

The way knowledge is expressed is a product of the type of shell used to represent the

knowledge and the features available in the shell. It is important that a shell provide as

many features as possible. These features make knowledge coding easier and provide greater

flexibility. The following subsections review the features that exemplify Nexpert Object's

outstanding knowledge design environment.

3.5.1 Control Schemes. Tho nonprocedural nature of knowledge-coding tools is both a

blessing and a curse. Without an internal control language, abstract control rule structures

must be used or control must be imposed via an external program. Nexpert Object allows for

the above controls, but has also provided a strategy mechanism that can be used globally or

on a rule-by-rule basis.

The most basic strategy modification is the control of action of effects. Whenever the

value of an object, property or hypothesis is modified, the knowledge base designer must decide

42

whether or not the system will propagate (investigate) the consequences of the modification.

Nexpert Object gives the following choices:

" PWF - propagate when false

" PWT - propagate when true

" PA - propagate anyway

" PF - prcpagate forward

" EXH - exhaustive evaluation

The above strategies are boolean flags and their negations can be declared by preceding

the flags with the keyword not. PWT propagates the inference to the next contexts encountered

in the process only if the original hypothesis is true. PA propagates the inference no matter

what the original state of the hypothesis was. PF will forward any RHS actions consisting

in giving new or different values to data. EXH ensures that any backward chaining from a

given hypothesis is exhaustive, i.e. all the rules pointing to it will be evaluated whatever the

results of the previous rules.

Nexpert Object also allows d- namic modification of inheritance search routines and

inheritability strategies for objects and classes.

3.5.2 Graphical Representation. A picture can be a worth a 1000 words .. . if only you

can get the picture to the screen or printer. An expert system should be able to provide a

network diagram. A network diagram can be presented as either indented text or preferably,

a graphic picture. The diagram helps by showing the programmer or user an overview of the

structure and organization of the program's logic. The ability to see a diagram of the decision

network helps you to identify missing fragments of logic and unnecessary duplication in the

logic (8:147).

43

Nexpert Object makes full use out of its dynamic windowing system to produce the

inspector program where selectivity and focus of attention are key mechanisms. The

inspector program can show a complete network diagram as a meshed graph of semantically

linked rules and data. The program can also localize investigations, thus allowing users not

to lose their focus of attention. That is, the inspector restricts the area of interactions to a

group of rules leading to a given hypothesis (semantic restriction), or to a well-defined zone of

the knowledge network (spatial restriction). From this starting point, the restricted area is

expanded by the user. This mechanism of selecting a knowledge area, and then expanding it,

or working on it, is referred to as Navigation Investigation.

As the user's focus of attention shrinks to a smaller number of relevant concepts to

investigate, h or she has the option to remove selected (either spatially or semantically)

parts of the knowledge nuLwork from the display. Moreover the inspector program works

in either single-focus or multi-focus mode. In single-focus mode, only one investigation is

pursued. When the user re-focuses on a selected rule or data, the previous investigation

is removed from the display, In multiple-focus mode, the inspector program enables any

number of investigations to be concurrently performed and displayed. That is, whenever

a new knowledge island is created displayed for expansion, previous investigations are not

removed from the screen (15:5.1).

3.5.3 Why/How Explanation Facilities. It is important for a logic program to give

some explanation of its reasoning to the user of the program. When debugging a program,

there is often a need for detailed trace information which goes beyond the simple explanation

facilities for a single rule. The user may be interested in the overall flow of the logic (what

happened and when), not just the logic behind a single goal.

Nexpert supports three tracing utilities for the user. The transcript window provides

continuous tracking of the rules currently being used by the inference engine and the data

44

modified by the execution of those rules. The case study window displays a dynamic list

of data currently known to the system with their current values, as well as the confirmed

and rejected hypotheses. The final tool, called the full report window, provides the rationale

behind the utilization of each and every rule applied by the system to draw its conclusions.

There are also separate windows that show the current rule, the current hypothesis, and

current conclusions within a system. All the above windows can be output to a printer or sent

to a file for later editing.

3.6 Cost

Costs for knowledge systems are not very different from those of other, more conventional,

systems. PC-based tools range from $99 to $10,000 (1988), minicomputer tools (specialized

workstation tools fall into this category) from $1500 to $75,000, and mainframe tools from

$25,000 to $250,000 (8:144). Generally, minicomputer software is 10 times more expensive

than PC software. A higher price, however does not necessarily mean more functionality.

It is important to match a tool's existing functions and cost to an application's needs while

considering all the previous selection criteria before making a final decision. The bottom

line is to pick a system that delivers the functionality to complete a project effectively and

efficiently.

Nexpert Object's price tag was well below the maximum price indicated above and those

of its competition. If a major hardware change occurs a small update fee will be charged in

order to re-host the development system. The table in Figure 15 shows the approximate cost

of the system at time of purchase.

45

Item Description Retail Price ($) Education Discount Price)
Development System 8,000 4,800
One Year Support 2,000 2,000
Database Bridge 1,200 720
Runtime Library 1,500 900
Shipping Costs 30 30
Total Cost 12,730 8,450

Figure 15. Purchase Costs for Nexpert Object

3.7 Summary

A number of expert system shells were evaluated with the above criteria, and all had

their advantages, such as speed or low cost, as well as their disadvantages, such as non-

portability or insufficient graphic representation. Nexpert Object was chosen because it best

fit the requirements for this thesis.

46

IV Replacement of Nuclear Strike Aircraft

4.1 Requirements

The AAFCE portion of TWX is divided into three events. The first event that must

be completed is the replacement of nuclear strike aircraft at certain airbases (See Figure

16.) Executive directors require that each side must maintain aircraft capable of nuclear

strike missions at all times. Personnel, acting in the role of the theater commanders, must

generate reports showing the status of all bases within the red theater in order to locate

which strike bases are short the number of strike aircraft required. The officers must then

locate replacements for the aircraft that were destroyed. There are two means by which strike

aircraft can be replaced.

" Re-role attack aircraft of the same type that already exist at the strike base

" Move attack aircraft of the same type from the augmentation base and then re-role them

to strike capability.

Red experts desired a knowledge base that could decide whether or not to re-role aircraft

or move new aircraft in from the augmentation base. By creating the necessary objects and

rules associated with those objects, the replacement of nuclear strike aircraft could be fully

automated.

4.2 Analysis

Analysis for creating the knowledge base was broken into the object-oriented process for

developing classes and objects that allow data to flow between the knowledge base and the

TWX database, and the process for generating the necessary rules for the knowledge base.

4.2. 1 Object-Oriented Design. Both the Nexpert expert system shell and the relational

database management system used by TWX provide an excellent platform for object-oriented

47

Strike Base Aircraft Type Number of Aircraft
23 U17S 15
26 M27S 15
28 M23S 15
43 M27S 15
46 U17S 15
47 M27S 15
49 U17S 15
58 U17S 15
69 M27S 15
87 U17S 15
92 M23S 15

Figure 16. Required Red Nuclear Strike Aircraft

design. Tables within the TWX database can easily be realized as classes within a knowledge

base.

The tables necessary for automating nuclear strike aircraft replacement were the

rd-ac-on-ab table, and the rd-strk-ac table. The rd-ac.on-ab table contains information on all

aircraft at each red airbase such as aircraft name, aircraft role, and number of aircraft. The

rd-strk-ac table contains the required number of nuclear strike aircraft required at a given

base much like the table in Figure 16. Using the above tables, the knowledge base would

have full access to the number of actual strike aircraft on an airbase as well the number

required to be on base. Thus the knowledge base needed two classes in which to organize that

information. Accordingly, a class was created for trackii.,b the number of strike aircraft on

base and a class for tracking the number of attack aircraft for re-role purposes were created.

Since both of these classes would share properties such as airbase id's, aircraft names, and

aircraft roles, it was easier to make them sub-classes of an airbase class and an aircraft class

and allow them to inherit the common properties. (See Figure 17.)

4.2.2 Rule Generation. It is much easier to graph out the conditions, actions, and

contexts of rules before actually writing them. Data flow diagrams, decision trees, and

48

ac-role aircraft airbase

req-quantity atk-quantity
act-quantity

ab23 ab46 ab87 ab92

Figure 17. KB Classes for Automating Nuclear Strike Aircraft Replacement

49

decision tables are quite useful when creating rules necessary for an application. Due to

the large number of conditions found in the later portions of the AAFCE phase and the

uncomplicated depiction of conditions and actions, decision tables were used to create and

display rules. Rules that do not share or directly modify data within other rules are called

knowledge islands. Knowledge islands can propagate or "fire" other rules that have been

placed in context with them. How rules are placed in context is explained in the solution

section of this chapter. A simple flow diagram will be used to illustrate the relationship

between rules, ie. their context.

Automating the replacement of nuclear strike aircraft requires the following:

1. Load the actual and required number of strike aircraft from the the database into the

knowledge base.

2. If the actual number of aircraft is less than the required number then re-role aircraft

of the same type stationed on the base or move in new aircraft for re-role from the

augmentation base.

3. Update all database tables involved, such as the rdiac-onab table for the airbases with

strike aircraft and the augmentation base.

Figure 18 illustrates the flow of control needed for the above requirements. "F" in the

figure stands for a false result but may also be used when the result of the condition is

unknown such as at the start of the knowledge session. "T" depicts only true results.

The first rule in the knowledge base was created to read in the appropriate data from

the TWX database. In order to start a knowledge run, either a hypothesis must be suggested

or a data value volunteered. Since all hypotheses are unknown at start up, suggesting "data

is loaded" would force the machine to evaluate the state of the hypothesis by investigating

the conditions leading to that hynothesis. This is known as backward chaining. Rule number

50

.START _

Sload data Fdtlae

T

atqareq-roeairrat

T

Figure 18. KB Rule Relationships for Automating Nuclear Strike Aircraft Replacement

51

CONDITIONS HYPOTHESIS
READ in Actual Quantity data-loaded

READ in Required Quantity

FIRE next rule

ACTIONS

Figure 19. Decision Table for dataloaded

one's hypothesis was appropriately, data-loaded. The conditions for data-loaded required

that data concerning the actual and required number of strike aircraft be loaded in from the

database. If the hypothesis was false then an error was raised during a read from the TWX

database and the knowledge session would end. If the hypothesis was true then the next rule

in context with data-loaded would be propagated. All airbases with strike aircraft would be

read into the class stkiac-on-ab and identified by their airbase id number. Figure 19 shows a

decision table for rule number one. In the figure conditions are shown in the left-hand side of

the box. All conditions must be true in order for the hypothesis, found in the upper right-hand

corner, to be true. If the hypothesis is true then the actions found on the right-hand side of

the box are executed in sequential order.

Rule number two was responsible for deciding whether or not there were any airbases

that had fewer than the required number of strike aircraft. If the hypothesis was false then

the session was complete. If the result of the conditions was true, the bases that were low

on strike aircraft would be assigned to the new class, atk-ac-on-ab, which would allow the

number of attack aircraft at that base to be retrieved from the database. The attack aircraft

and the strike aircraft would be of the same type, ie. a M27-A and a M27-S are of the same

type. After the knowledge base read in the new data, the rule would fire the next set of

rules that would evaluate whether there were enough aircraft on base to handle the shortage

52

CONDITIONS HYPOTHESIS
Is act-quantity < req-quantity low-on-stk-ac

ADD to atk-ac-on-ab class

READ in Atk Quantity

FIRE next set of rules

ACTIONS

Figure 20. Decision Table for low-on-stkiac

or would aircraft have to be moved from the augmentation base. The above hypothesis was

low-on-stkiac. Figure 20 shows the decision table for rule number two.

To determine if attack aircraft stationed on a base could be re-roled to their strike

configuration, the knowledge base required two rules. Rule number three re-roled all attack

aircraft to strike aircraft if the number needed was greater than or equal to the number of

attack aircraft on base. The hypothesis for this rule was rerole-atk-ac-from-same-base-all. It

is possible to re-role all attack aircraft at an airbase since new atttack aircraft will be moved

in from the augmentation base as long as there is enough ramp space available and the base

is not too severly damaged. The fourth rule re-roled only z. portion of the attack aircraft if

the needed number was less than the number of attack aircraft on base. The hypothesis for

this rule was rerole-atkac-from-same-base-some. The actions of both rules were the same. If

the hypothesis was true then the maximum number of attack aircraft needed were re-roled.

If the number of attack aircraft failed to replenish the required number of strike aircraft the

next set of rules would be fired in order to move aircraft in from the augmentation base. If

the required number of aircraft was provided then the knowledge session would reset these

two rules in order to check for shortages on other bases. Figures 21 and 22 show the decision

tables for rules three and four respectively.

53

CONDITIONS HYPOTHESIS
Is act-quantity < req-quantity rerole-at-acromsamebase-a11

Is atk-quantity _< number needed

Is atk-quantity > 0 act-quantity . act-quantity+atk-quantity

atkquantity 4- 0

FIRE rules for moving in aircraft

ACTIONS

Figure 21. Decision Table for rerole-atkfrom-same-base.all

CONDITIONS HYPOTHESIS
Is act-quantity < req-quantity reroleatkac-from-same-basesome

Is atk-quantity > number needed

act-quantity req-quantity

atkquantity

atkquantity-number needed

FIRE rules to check next base

ACTIONS

Figure 22. Decision Table for rerol-atk-fromsame-base-some

54

CONDITIONS HYPOTHESIS
Is atk-quantity _< number needed bring-atk-ac-from-aug-ab-all

Is atk-quantity = 0

READ in quantity at augm. base atk-quantity 4 aug-quantity

Is aug-quantity < number needed aug-quantity -= 0

Is aug-quantity > 0 RESET & FIRE rules for re-roling aircraft

ACTIONS

Figure 23. Decision Table for bring-atk acfromiaug-ab-all

CONDITIONS HYPOTHESIS
Is atk-quantity _ number needed bring-atk-ac-from-aug-ab-some

Is atk-quantity = 0

READ in quantity at augm. base atk-quantity €z number needed

Is aug-quantity > number needed aug-quantity -=
aug-quantity-number needed

RESET & FIRE rules for re-roling aircraft

ACTIONS

Figure 24. Decision Table for bring-atk-acfrom-aug-ab-some

The last two rules were created in the same manner as rules three and four. Rule

number five moved all attack aircraft from the augmentation base if the number needed

exceeded or equaled the quantity of aircraft on station. Rule number six moved the required

number of aircraft if base supplies surpassed the needed amount. Again the action of these

rules were the same except for the actual number of aircraft to be move. If either rule

was found to be true then the rules necessary for re-roling the new aircraft were reset and

placed on the agenda to be evaluated. The names of the hypothesis for rule five and six were

bring-atk-ac from -aug-ab-all and bring-atk-acfrom-aug-ab-some r'espectively. The decision

tables for theses rules are in Figures 23 and 24.

55

4.3 Solution

Nexpert Object allowed for easy implementation of the knowledge base's classes and

rules. The actual link between the TWX database and the knowledge base was accomplished

using a combination of TWX database's structured query language (SQL) and Nexpert's

database bridge software. The rest of this section describes the unique problems found while

automating this portion of '\AFCE planning and how they were solved.

The following SQL statement generated the required number of strike aircraft and the

bases at which they were stationed from the relational database.

select abid, acname, acrole, quantity
from rd strk ac on ab

The actual number of strike aircraft on station required the joining of the two tables,

rd-strkxxc-n-ab and rd-ac-onxab. The following shows the SQL statement used:

select b.abid, b.acname, b.ac role, b.quantity
from rd strk ac on ab a, rd ac on ab b
where a.ab id = b.ab id

adj a.ac name = b.ac name
and b.ac role = "S"

The same SQL statement as the one used to produce the actual number of strike aircraft

constructed the actual number of attack aircraft on base, except the ac-role was changed

from "S" to "A". The following SQL statement generated the number of attack aircraft at the

augmentation base: (Note: The augmentation base has an ab-id of 96.)

s2lect a.ab id, a.ac name, b.quantity

from rd strk ac on ab a, rd ac on ab b
where o.ab id = 96
and a.ac name = b.ac name

and b.ac role = "A"

56

The resulting data from the above SQL statements is loaded into the knowledge base

only when called for by a read instruction within a rule.

Nexpert Object's context editor established the flow of control between rules. By placing

one hypothesis in context with another, the confirmation of the first hypothesis would place

the second hypothesis on the agenda to be investigated. When data-loaded is found to be true

it must ire the rile responsible for locating strike bases with shortages. Thus low-on-stkiac is

placed in context with data loaded. The following is a summary of contexts for the hypotheses

within the knowledge base:

data loaded:
low on stk ac

low on stK ac:
zerole atk ac from same base all
rerole atk ac from-same base some

rerole atk ac from same base-some:
rerole atk ac from same base some

rerole atk ac from same base all:
bring atk acfromaug_ab_all
bring atk ac fromaug_ab_some

bringatk ac from-aug absome:
rerole atk ac from same base all

bring atk ac from-aug aball:
rerole atk ac from same base all

The context between two rules can also be thought of as a calling mechanism. If

low on-stkiic is in context with data-loaded then in theory, lowon-stkiic calls data-loaded if

the hypothesis is found to be true. The strategy mechanism in Nexpert Object must be set to

"Forward Confirmed Ilypothusis (PWT)" to facilitate the above actions.

The use of two temporary objects accomplished updating the TWX database. Res-temp

was created to update the strike and attack aircraft quantities after re-roling has taken place.

57

Aug-temp was created to update the augmentation and receiving base after aircraft were

transferred between them. Nexpert Object allows special attributes called an IF-CHANGE

slot for objects declared within the knowledge base. If a designated slot is changed during

a knowledge session, a set of actions, separate from the rules, can be executed. The above

objects contain a property called diff. When this property changes values, the TWX database

is updated and a screen is displayed to the user describing what action the knowledge base

has taken. A logfile is also updated so that a hardcopy of the knowledge base's actions can be

recalled at a later time.

Variables used within the knowledge base are initialized using Nexpert's ORDER-OF-

SOURCES utility. When a rule needs the value of an unknown property, Nexpert examines

a table of prioritized sources where the value of the property might be found. If Nexpert

cannot locate a value it simply asks the user to enter one. Since the purpose of this effort

is to eliminate user interaction, we initialized all properties to zero or null using the INIT-

VALUE command within the utility. This command initialized the selected properties to their

suggested values upon start up of the knowledge session.

The knowledge session is started by using Nexpert's FORMS-INPUT program. This

program allows a programmer to use specialized commands to create a screen-(, iented

in terface to the knowledge base. Using FORMS-INPUT a introductory message is displayed,

explaining the purpose of the knowledge base. The program then prompts the user to click

un an icon marked "continue" which then loads the knowledge base, suggests the hypothesis,

data loaded, and starts the knowledge session. The program is then used to display actions

taken by the knowledge base until the session concludes. The user can then exit from Nexpert

and recall the reqults from a log fle or continue with other portions of the AAFCE phase of

'1WX.

5 8

4.4 Summary

In the current version cfTWX, the red player is guaranteed to have enough replacement

aircraft at the augmentation base to handle any shortage discovered throughout the course

of the exercise. Thus, moving attack aircraft from the augmentation base should cover all

replacement requirements. A suggested enhancement might be to create additional rules for

the knowledge base to allo- for the event that the augmentation base cannot provide the

required number of attack aircraft. The rules would have to look for other airbases that did

not contain strike aircraft (a red player would not want to borrow from a base that might

need them later), but have the same type of aircraft in an attack configuration. The new

rules could then fire the original rules responsible for re-roling the attack aircraft. This would

make the knowledge base more adaptable and responsive to "real" world events.

Automating the replacement of nuclear strike aircraft using Nexpert Object was an

order of magnitude easier than trying to write a program in a procedural language such as 'C'

or FORTRAN. After creating the classes and objects necessary for interfacing with the TWX

database, creating the flow control diagram and the rules' decision tables, Nexpert Object

simplified the knowledge base construction by providing a dynamic and flexible interface for

entering the above information.

59

V Aircraft Beddown

5. 1 Requirements

The second event required for the successful completion of the AAFCE portion of TWX

is the bedding down of new aircraft from the augmentation base. For this milestone, TWX

players are required to:

* find the type, role, quantity, and ramp space needed for the aircraft scheduled for

relocation

" check on which bases the aircraft are allowed

* check which bases have the highest status

" check which bases have the highest number of shelters and revetments

" check which bases have the highest amount of ramp space available

Airbase status refers to the numerical value given to each airbase in order to determine

its present state of readiness. A base status has a range from zero to one, with one being the

highest. The nunier of shelters and revetments are also determined for each airbase. The

only difference between shelters and revetments are that shelters provide better protection

for the aircraft. The above information comes from reports that are printed out each day of

the exercise.

Personnel at the Air Force Wargaming Center required a knowledge base to automate

the heddown of all aircraft moved from the augmentation base. The criteria for the knowledge

has(was as follows:

1. Prioritize, according to player directives, the aircraft at the augmentation base for

relocation

60

2. Prioritize the airbases according to their status, number of shelters and revetments, and

ramp space available

3. Move aircraft only to airbases where they are allowed

5.2 Analysis

The analysis section is divided into three subsections. The first subsection concerns

the initial development for the airbase and aircraft prioritization schemes. The second

subsections contain the object-oriented design process for this knowledge base and the last

subsection reviews the rule generation process.

5.2.1 Prioritization of Aircraft and Airbases. Allowing a player to prioritize the acqui-

sition of aircraft from the augmentation base required a new attribute in the database table,

rd-aircraft. We named the attribute "merit" and gave it a range from 0 to 100, with the

highest merit equal to 100. Thus, a simple screen could be created, displaying the type, role,

number, and merit of the aircraft scheduled for relocation from the augmentation base. This

screen would permit the player to choose which aircraft would be moved first by assigning the

selected aircraft with the highest merit. The aircraft would then be transferred according to

their merit in descending order.

Prioritizing the airbases for aircraft relocation required an algorithm that would produce

a base merit derived from the base status, number of shelters, number of revetments, and

ramp space available. We determined that each variable in the algorithm would be mutually

exclusive. This meant that if an airbase had a status of 1.00 while another base had much

better shelters and more ramp space, then the airbase with the higher status would still be

chosen. The reason for this decision was that the key strategy to bedding down new aircraft

was to produce the maximum number of sorties that could be flown from each base. The

principal element in determining sortie generation was airbase status. Each of the other

61

elements for determining an airbase's status were also given the same treatment with the

elements prioritized as follows:

1. Base status

2. Number of shelters

3. Number of revetments

4. Rampspace available

The resulting algorithm was as follows:

(Revetments Rampspace
Merit = (Status * 10000 + 3) + (Shelters * 10 + 2) + (+ 1) + 1000

10 1000

The divisors/multipliers used remove the order of magnitude differences between the vari-

ables, while the addition operations within the parentheses order the variables according to

their priority. It should be noted that the above algorithm would have best been implemented

as a set of rules. However, this required the use of an "or" condition and the procedure for

implementing this condition in Nexpert would not produce the correct results.

5.2.2 Object-Oriented Design. Details needed by the knowledge base came from three

tables within the TWX database. Information dealing with aircraft name, role, merit, and

ramp space required by the plane came from the table, rd-aircraft. Data on what aircraft were

available for the aug nentation base came from the rd-ac-on-ab table. The table rd-ac-al-on-ab

contained data on which bases a specific type of aircraft could be stationed. The knowledge

base required two classes to store the above information. The class ac-on-augm-base contained

all data from the rd-ac-on-ab and rdcaircraft tables, and the class ac-al-on-ab saved all data

from rd-ac-al-on-ab where the aircraft were those at the augmentation base. Both classes

62

ac-name ab-id

ac-role aircraft airbase ab-status

merit num-rvmts

ramp-space num-shltrs

best-ac best-base
ac-on- ca-n.

quantity augmbase

M27A M25D U24A98 M23D57

Figure 25. Classes for Automating Aircraft Beddown

were actually children of the two primary classes, airbase and aircraft, enabling them to

efficiently inherit common properties (See Figure 25.)

The objects "best-base" and "best-ac" are used to store the airbase and aircraft with the

highest merit. The objects in the class ac-on-augm-base are identified by the name and role

of the aircraft. -'he objects in the class ac-al-on-ab are identified by the name and role of an

aircraft and the airbase id on which the aircraft may be stationed.

5.2.3 Rule Generation. The actual relocation of aircraft from the augmentation base

to their destinations required the following actions:

1. Load in data from the TWX database on the aircraft at the staging base.

2. Find the aircraft with the highest merit.

63

3. Find all airbases on which the aircraft may be stationed.

4. Find the airbase with the highest merit

5. Move as many aircraft to the airbase as allowed by available ramp space.

6. Get next best airbase as needed.

7. Get next best aircraft as needed.

Figure 26 illustrates the flow of control needed to resolve the above requirements.

We again used the hypothesis data-loaded to start the knowledge session. The successful

loading of all data concerning aircraft name, aircraft role, quantity, and ramp space used into

the class ac-on-augm-base resulted in data-loaded being true. The decision table for rule

number one is shown in Figure 27.

If the knowledge base was able to retrieve the needed material for the TWX database

then looking-for-best-ac is placed on the system's agenda and investigated. This rule examines

the merit of all aircraft within the ac-on-augm-base class. Upon finding the aircraft with the

highest merit it places the name, role, merit, quantity, and ramp space needed in the object

"best-ac." This rule is recursively used until it it cannot find an aircraft with a merit higher

than the one held by "best-ac." The rule for determining possible sites to relocate the aircraft

pointed to by "best-ac" are then evaluated (See Figure 28.)

Once the aircraft with the highest merit is found then all possible relocation sites for

that aircraft are retrieved from the TWX database along with the base status, number of

shelters and revetments, and ramp space available at those bases. The hypothesis for this

rule is get possible-sites. The airbases are placed in the class ic-al-on-ab. If one or more

bases are found then the rule evaluates to true and the rule responsible for finding the base

with the highest merit is placed on the system agenda (See Figu-e 29.)

64

Sload data Fdtlae

OgetNa with Higher Merit et

9

T

get airbases on
which ac can be
stationed

Sget ab with Higher Merit b wihHgesFei

S move ai rcraf

T

F T

DONE ae

S get next airbase t

Figure 26. KB Rule Relationships for Automating Aircraft Beddown

65

CONDITIONS HYPOTHESIS
READ in ac-name data-loaded

READ in ac-role

READ in quantity RESET and FIRE rule to locate best ac

READ in rampspace needed

READ in merit

ACTIONS

Figure 27. Decision Table for data-loaded

CONDITIONS HYPOTHESIS
Is ac.merit > best-ac.merit looking-for-best-ac

Is ac quantity > 0

best-ac.ac-name -t: ac.ac-name

best-ac.ac-role - ac.ac-role

best-ac.merit ac.merit

best-ac.ramp space = ac.rampspace

____________________________ best-ac. quantity <-- ac.quantity

RESET and FIRE rule to get possible sites

ACTIONS

Figure 28. Decision Table for looking-Jor-best-ac

CONDITIONS HYPOTHESIS
READ in ab-id get-possible-sites

READ in ab-status

READ in number of shelters RESET and FIRE to locate best base

READ in number of revetments

READ in rampspace available

ACTIONS

Figure 29. Decision Table for get possi ble -sites

66

CONDITIONS hYPOTHESIS

Is ab.merit > best-base.merit looking-for-best-base

Is ab.rampspace > 0

best-base.ab-id €= ab.abjd

best-base.ab-status <= ab.ab-status

best-base.merit '€= ab.merit

best-base.rampspace , ab.rampspace

best-base.num-shltrs <= ab.num-shltrs

best-base.num-rvmts -= ab.num-rvmts

RESET and FIRE ac movement rule

ACTIONS

Figure 30. Decision Table for lookingjfor-best-base

The rule responsible for determining the airbase with the highest merit has the same

structure as the rule for finding the aircraft with the highest merit. All bases within

the ac-al-on-ab class are reviewed and the base with the highest merit is placed in the

object "best-ab." The algorithm developed in the prioritization subsection above was used to

formulate each airbase's merit. The rule is recursively fired until the airbase with the highest

merit resides in "best-base." The hypothesis for this rule is looking-for-best-base. When this

hypothesis evaluates to false the rules for relocating the aircraft are inspected. Figure 30

shows the decision table for this rule.

After the best airbase and aircraft have been established a rule is fired to calculate

the maximum number of aircraft that can be sent to that base. Move-planes-to-base places

this value in the object "max-num-of-ac." This rule then pursues two other rules to decide

whether or not this amount can cover the total quantity of the aircraft at the augmentation

base. Figure 31 shows the decision table for move-planes-to-base.

The next two rules have the following hypotheses: move-all-actoh-ase and

motve-some-ac to-base. If the quantity of aircraft that needs to relocated exceeds the number

that can be station on a particular airbase then only the number that the airbase can hold

67

CONDITIONS HYPOTHESIS
IS best-ac KNOWN move-planes-to-base

IS best-base KNOWN

CALCULATE max-num-of-ac

RESET and FIRE plane movement rules

ACTIONS

Figure 31. Decision Table for moveplanes-to-base

CONDITIONS HYPOTHESIS
IS best-ac.quantity _< max-nvm-of-ac move-all-ac-to-base

best-ac.quantity - 0

best-base.rampspace 4

best-base.rampspace-rampspace used

FIRE rule to get new ac

ACTIONS

Figure 32. Decision Table for move-allplanes-tolbase

will be move from the augmentation base. However, if the number of aircraft that can be

moved to a base is greater than the number awaiting relocation then all aircraft from the

augmentation base will be transferred. Both rules update the following database values:

" the quantity of aircraft existing at the augmentation base

" the quantity of aircraft existing at the receiving base

" the ramp space available at the receiving base

The decision tables for these rules can be seen in Figures 32 and 33.

The final two rules in the knowledge base determine whether to retrieve another airbase

for the current aircraft or acquire a new aircraft. If all planes of a specific name and role were

removed then the hypothesis check for-new-ac-needed would evaluate to true, effecting the

deletion of the object "bestac" and the class ac-alon-base. This would allow the rules, used

previously, to again determine a new aircraft with the best merit and the bases available for

68

CONDITIONS HYPOTHESIS
IS best-ac.quantity > max-num-of-ac move-someac-to-base

best-ac.quantity .=
best-ac.quantity-max-num-of-ac

best-base.rampspace =

bestbase.rampspace-rampspace used

FIRE rule to get new base

ACTIONS

Figure 33. Decision Table for move-some-planes-to-base

CONDITIONS HYPOTHESIS
IS best-ac.quantity = 0 checkfor-new-acneeded

DELETE best-ac and ac-al-on-ab

RESET and FIRE rule to get new ac

ACTIONS

Figure 34. Decision Table for check for-newac-needed

its beddown operations. If the quantity of"best-ac" has not been depleted then the hypothesis

check-for-new-base-needed is true. This rule removes the object "best-base" and fires the rule

for determining a new base and also resets and fires those responsible for aircraft movement

(See Figures 34 and 35.)

The above sequence of rules continue to execute until either no planes exist at the

augmentation base or the maximum number of aircraft that can be transferred are moved.

CONDITIONS HYPOTHESIS

IS best-base.rampspace check-for-new-base-needed

< rampspace nieeded

IS best-ac.quantit- DELETE best-base

RESET and FIRE rule to get new base

ACTIONS

Figure 35. Decision Table for check for-new-base needed

69

5.3 Solution

All data required by the knowledge base is retrieved through Nexpert's database bridge

from the TWX relational database. The following paragraphs present the SQL statements

necessary for obtaining the desire information in the needed format.

The name, role, merit, ramp space needed, and quantity of aircraft stationed at the

augmentation base are generated by joining the rd-aircraf and rdac-on-ab table within the

TWX database. The SQL statements necessary are:

seiect distinct b.acname,b.acrole,a.merit,b.quantity,
a.ramp_space

from rd aircraft a, rd ac on ab b
where a.ac name = b.ac name
and a.ac role = b.ac role
and b.ab id = 96
order by merit DESC, acname, acrole

Airbase number, 96, is the augmentation base. The objects are ordered by merit in

descending order. This creates a more efficient knowledge base since the first object read in

will have the highest merit and the rule responsible for finding the aircraft with the highest

merit will always choose the first object.

Information pertaining to the airbases on which an aircraft can be stationed is retrieved

by joining rd-acal-on-ab, rd-airbase, rdac-on-ab. The current version of the knowledge base

retrieves data for all aircraft at the augmentation base and then removes the unneeded bases.

The following is the SQL statements used for this operation:

select distinct a.acname+a.acrole+ASCII(a.abid),
a.ac_name,a.ac_role,a.abid,b.abstatu'i,
b.numshelters,b.numrevet,b.rampspace

frorm rd ac al on ab a, rd airbase b, rd ac on ab c
where c.ab id = 96
and a.ac_rame = c.ac name
and a.ac role = c.ac role

70

and a.ab id = b.ab id
order by ,c_riame,acrole,abstatus DESC,numshelters DESC,

num revets DESC, rampspace DESC

The first line of the SQL statement creates an unique key for each object read in from

the database. The key is determined by the aircraft name, role, and by the airbase id. Again

all data is ordered in a way to make the knowledge base work more efficiently.

The rule control structure was created using Nexpert's context editor. The strategy used

in this knowledge base was "propagate when true" (PWT). This means that rules in context

with a current rule will not be placed on the knowledge session's agenda unless the current

rules evaluates to only true. Thus for the rule used in finding an object with the highest

merit, the rules are placed in context with themselves and with the rules needed to continue

with t',e session. As long as the rules evaluate to true then they are still looking for an object

that has a higher merit than the current one. When the rules evaluate to false then the other

rules are allowed to execute. This strategy is accomplished thrcugh the use of an "inference

category." If two rules are in context with another rule and the rule evaluates to true then

the next rule to be used is determined by which rule has the highest inference category. In

the case of the rule looking for the highest merit, recursion is produced by making the current

rule's inference category higher than any of the other rules in context with it. Below are a list

of the hypotheses and their contexts. The number in parentheses is the inference categor'.

data-loaded:
looking best ac (3)

lookingfornest ac:

lookina _for best ac (3)
r Ipossible_sites (1)

get possible-sites:
looking forbestbase (3)

locking _ forbestbase:
iookng for best base (3)

v,-, Jlane to ba-se (1)
ov _planes to base:

covre all ac to bas, (I

7'1

move some ac to base (2)
move all ac to base:

check for new ac needed (1)
move some ac to base:

check for new base needed (1)

Updates to the TWX database from the knowledge base are accomplished through the

use of the object "update." By using the IF-CHANGE mechanism in Nexpert, whenever the

value of "update" is changed from false to true, aircraft quantities on the receiving base are

updated. A log file containing the destination abid, ac-name, ac-role, and quantity of aircraft

moved is also updated and a screen is displayed to the user describing the action taken.

The rules for finding the object with the highest merit must evaluate to true at least

once. This is accomplished by initializing the merits of "best-base" and "best-ac" to -1. Thus

any aircraft or airbase with a merit greater than or equal to zero with ,-ause to the rules to be

evaluated to true. The merit for each airbase is automatically calculated when asked for by

the knowledge session. Nexpert's ORDER-OF-SOURCES mechanism applies the algorithm

developed whenever the knowledge session detects a needed vaile that is unknown. This

allows the merit of the airbase to dynamically change during a session due to the number of

aircraft relocated to the base.

The FORMS-INPUT program in Nexpert again provided the necessary statements to

load the knowledge base and start the session. It was also used to display the current status

,f the session to the user.

.,I ,'3urinary

One of the primary reasons for selecting a knowledge-based system instead of a pro

cedural language for automating the AAFCE portion of TWX was the system's ability to

icilitate (ln rs without a m ajor modificatior in 'oftware. After creating the above knowl

I dc-r Lisa, a sci;,-,,ostion wa-s made to make the aircraft rvlocate in regiment-size flights -f

72

CONDITIONS HYPOTHESIS

IS maxnini-of-ac > 25 move-regiment-to-base

IS hest-ac.quantity > 25

best-base.rampspace <

best-base.rampspace-rampspace u-ed

best-ac.quantity =

best-ac.quantity-25*X

RESET and FIRE rule to get new base

ACTIONS

Figure 36. Decision Table for move-regiment-to-base

CONDITIONS HYPOTHESIS
HAVE all bases been used for I check-lor-alLbases-used

regimental moves

RESET and FIRE rules for regular
movement

ACTIONS

Figure 37. Decision Table for check for-all-bases-used

25 planes instead, moving as many planes to a base as possible. The only modifications to

the knowledge base were the addition of two rules and the placement of these rules within

the context of the established ones. The first new rule determines the number of flights

that a base can handle and move those flights to the receiving base. The hypothesis for

this rule is move-regiment-to-base. The second rule is evaluated to true whenever all bases

within the class acal-on-ab have been examined for moving regiment-size flights to them. If

aircraft still exist then the old aircraft movement rules are allowed to fire in order to move

as many planes as possible ' bases with the highest merit. The hypothesis for this rule is

check for-all ases-used. The decision table for these rules can be seen in Figures 36 and 37.

The current knowledge base relies on the red player for selecting the merit of each

aircraft at the augmentation base. A future modification n.ight, be to generate the rules

rwrosscry for calculating the merit of the aircraft according to a sct of criteria much like

72

the list used to produce the merit of each airbase. This would create a more complete and

independent knowledge base.

74

VI. Logistics Movement

The final event in the AAFCE phase is the movement of logistics from supply bases.

Each aircraft requires a specified amount of petroleum (POL), munitions, and spares (PMS)

to generate one sortie. Sincep it is possible for an aircraft to fly more than one sortie per day

then the maximum amount of PMS must be available on the base to maintain the aircraft's

maximum number of sorties. Munitions for an aircraft are determined by the type of mission

it flies. Thus a base must be able to supply munitions for the mission that requires the highest

load. POL and spares remain the same for each mission.

Aircraft moved from the augmentation base are transferred to their new bases with only

two days worth of spares. All other supplies must be provided by the airbase. However, any

aircraft not moved from the augmentation base requires the use of existing base supplies,

including spare parts. If a shortfall occurs, the amount of PMS needed must be brought in

from the supply base. There are two supply bases available to the red player. The supply

base used is determined by the ATAF in which an airbase belongs. If the airbase is assigned

to 2ATAF then its supply base is PAF AD or base number 21. If the airbase is a member of

the 4ATAF then its supply base is PAF GA or base number 98.

PMS on each base must not exceed the base's maximum tonnage limit. If the required

amount of supplies surpasses this limit, unessential supplies must be returned to the supply

base before the needed items can be received.

Red players using TWX called for a knowledge base that would automate the r at

of logistics by:

" Finding the maximum mission loads required by all aircraft on each base

" Locating all base PMS shortfalls

" Transferring unessential material back to the supply base if necessary

75

* Moving the required amounts of PMS to each base

6. 1 Analysis

6.1.1 Object-Oriented Design. Numerous tables within the TWX database were re-

quired for supplying the knowledge base with the necessar Ita for automating logistics

movement. Data on red PMS came from four different tables in the database. Weight

measurements on specific PMS items came from the table rd-pms. The airbase inventories of

PMS came from the table rdpms-oniab. The different types of munitions loads based upon

an aircraft type and its mission came from the table rd-stdids. The amount of munitions

i equired by a specific mission came from the table rd-std-mun.

Other details such as the maximum tonnage limit for the base came from the table

rdcairbase. Finally the table rdac-on-ab was used to provide the data for determining the

maximum PMS needed and the existing PMS tonnage for each base.

The knowledge base used three classes to store this data. The classes airbase and pms

were created as parents for the class pms-diff-on-ab. Rd-pms-diff-on-ab contains the airbase

id number and the difference between the actual amount of PMS and the needed amount of

PMS for each type of munitions, pol-diff, spr-diff, and aimLdiff, etc. The class also contains

the ataf number of the airbase and the existing and maximum tonnage at the base. The class

pms contains the name of each PMS item and its surface transportation weight. This class

is used in determining whether or not the base tonnage limit will be exceeded by the amount

of PMS required to cover all base shortfalls. Figure 38 shows the class structures and their

relationships to their objects in the knowledge base

6. 1.2 Rule Generation. The movement of needed materials to meet base shortfalls as

well as the movement of overages required the following actions:

76

ab-id pms-name

ataf airbase pins pms-weight

max-tonnage

exist-tonnage

pol spares

aimi-diff

aimr-diff pms-dif-on-ab

atsm-diff

cbu ldiff

cbu2-diff

gb-diff

gpl-diff

gp2-diff

poI diff

spr-diff ab23 ab24 ab26

Figure 38. Classes for Automating Logistics Movement

77

1. Load in data concerning airbases and pms, eg. id's, weights, etc.

2. Load in PMS differences for each base

3. Check for PMS shortfalls

4. Move overages to supply base as needed

5. Satisfy base shortages

6. Get next airbase as needed

Figure 39 presents the flow of rule control used by the knowledge base for the above actions.

The knowledge session is started by suggesting the hypothesis data loaded. This rule

loads the classes pms-diff-on-ab and pins with data from the TWX database. A successful

loading of the knowledge base classes results in the contextual propagation of the next rule

(See Figure 40.)

Once the data has been loaded, the first base is set as the current base. The knowledge

base then retrieves the PMS difference values for the current base. These values, calculated

by the database, are the result of subtracting the needed supplies from the existing supplies.

A positive difference denotes an overage while a negative number marks a shortage. These

values are read for each base, resulting in a true evaluation of the hypothesis current-base-set

(See Figure 41.)

The true evaluation of current-base-set results in the firing of eleven different rules.

The first ten rules check for shortfalls in the ten types of PMS. All rules except for the rule

that examines the POL supply may fire other rules selected for moving overages due to an

excessive amounts of supplies that inhibit the movement of needed items. There is no need for

POL overage movement rule since POL can be moved onto a base without increasing a base's

supply tonnage. The final rule evaluates whether or not the current base has been absolved

of all shortfalls. Once all shortfalls have been removed, another base is evaluated until no

78

STR

F

get nexte aerbase

Figue 39 RBRuleRelaionhipsfor utoaiLoistisMvmn

79T

CONDITIONS HYPOTHESIS
READ in airbase info data-loaded

READ in PMS info

FIRE rule to add in PMS differences

ACTIONS

Figure 40. Decision Table for data-loaded

CONDITIONS HYPOTHESIS
IS airbase available current_base_set

LOAD PMS differences

RESET and FIRE rules to find shortfalls

ACTIONS

Figure 41. Decision Table for current-base-set

other bases are found. The rules for POL movement, munitions movement with or without

overages returned, and the next-base-selection rule are discussed in further detail below.

The hypothesis for POL shortfall evaluation is called add-pol-from-supply-base. If the

POL difference is less than zero then this rule becomes true. The current airbase' id and

quantity needed are then placed in a temporary object, dynamically named after the airbase

id no, eg. POL23. This information is used by the rule responsible for supply base updates.

Quantity needed is increased by ten percent which "pads" a base's supply. This pad was

entered at the request of the red experts from the Ar Force Wargaming Center, due to the

random nature of attrition. Figure 42 shows the decision table for add-pol-from-supply-base.

This rule then fires the rule responsible for updating the TWX database.

All other rules, accountable for munitions and spares, must first check to make sure

the needed supplies do not surpass the airbase's tonnage limit. If the munitions' or spare's

80

CONDITIONS HYPOTHESIS
IS current-base.pol-diff < 0 add-pol-from-supply-base

CREATE OBJECT POLcurrent-base.abid

ADD 10% to quantity needed

RESET and FIRE rule to update

supply base

ACTIONS

Figure 42. Decision Table for add-POL-from-supply-base

diff is less than zero and the maximum tonnage is exceeded by the needed supplies plus

ten percent then the hypothesis add_????_from -supply-base-with-over becomes true. The

variable, ????, is used in place of tlhe actual munitions being evaluated. The valid set

of munitions is AIMI, AIMR, ATSM, CBU1, CBU2, GB, GP1, GP2, and SPARES. If the

munitions being evaluated was a cluster bomb unit, type 2, then the hypothesis would be

add -cbu2_fromsupply-base-withover. The tonnage over the airbase maximum is placed in

the object "tonnage-over-max" and the rule for selecting the largest overage at the current

base is placed on the system's agenda. If there is enough room at the current base from

the incoming supplies then the hypothesis add_????_from-supply-base is true and actions like

those of addpolfromsupply-base are executed. Figures 43 and 44 show the generic decision

tables for the above rules.

The hypothesis looking-forJargest-overage evaluates to true until the largest difference

munitions on the current airbase is found. The PMS name, PMS weight, and difference

amount, are then assigned to the object "max-overage." The rule for sending the overages

back to the correct supply base is then fired (See Figure 45.)

The hypothesis ocerages-sent-back evaluates to true when the object "max-overage" is

defined. The rule is responsible for updating the current base's existing tonnage after the

81

CONDITIONS HYPOTHESIS
IS current-base.pol-diff < 0 add__from-supply-base-with-over

IS max tonnage < tonnage needed

RESET and FIRE rule to find

largest overage

ACTIONS

Figure 43. Decision Table for add-???_from-supply-base-with over

CONDITIONS HYPOTHESIS
IS current-base.pol-diff < 0 add_????_from-supply-base

IS existing tonnage > 0

CREATE OBJECT ????current-base.ab-id

ADD 10% to quantity needed

UPDATE existing tonnage

RESET and FIRE rule to update

supply base

ACTIONS

Figure 44. Decision Table for add_????_from-supply-base

CONDITIONS HYPOTHESIS
Is current-diff > 0 T looking-for-largest-overage

Is current-diff > max-overage

max-overage.diff €= current-diff

max-overage.name €= pms-name

max-overage.weight ; pms-weight

RESEI and FIRE rule to send

back overages

ACTIONS

Figure 45. Decision Table for looking-for-largest-overage

82

CONDITIONS HYPOTHESIS
IS max-overage.name KNOWN overages-sent-back

UPDATE existing tonnage at current base

RESET and FIRE rule to update

supply base

ACTIONS

Figure 46. Decision Table for overages-sent back

overages have been removed and firing the rules that update the supply base's inventory (See

Figure 46.)

The rules responsible for updating the correct supply bases both point to the same

hypothesis supply base-updated. By having two rules point to the same hypothesis, an OR

condition is created with two separate sets of actions. In this case, if the current airbase is

part of the 2ATAF then supplies are sen' to or retrieved from base 21. If the current base is a

member of the 4ATAF then supplies are sent to and retrieved from base 98. The advantage

of this OR condition allows both rules to be fired by propagating a single hypothesis. These

rules update their respective supply bases as well as the PMS totals for the gaining/losing

airbase. Once the database updates have taken place tl 1ledge session resets and fires

current base-set. This allows the updated differences to be re-loaded from the TWX database.

The generic decision tr le for these rules is shown in Figure 47.

The last rule needed by the knowledge base designates the next airbase to be evaluated

on(-(tho current bases is found to have no differences. The current base is then deleted

from the class putsdiff-onab and the new airbase is selected. The hypothesis for this rule is

ready f)r-ext base (See Figure 48.)

83

CONDITIONS HYPOTHESIS
IS current-base.ataf = 2 OR 4 Iupply-base-updated

UPDATE supply base 21 OR 98

UPDATE supplies of current base

RESET and FIRE rule to check

current base

ACTIONS

Figure 47. Decision Table for supply-base-updated

CONDITIONS HYPOTHESIS
Are ALL shortfalls removed ready-for-next-base

DELETE current base

RESET and FIRE rule to set next

current base

ACTIONS

Figure 48. Decision Table for ready -or-next-base

84

6.2 Solution

Airbase information for the class pms-diff-on-ab was generated by joining the tables

rd-airbase, rdpms, and rd-pms-on-ab. Properties such as airbase id, ATAF number, and

maximum tonnage came from the table attributes of rd.airbase. Existing tonnage was

calculated by multiplying PMS surface weights from rd-pms with the airbase inventory of

PMS found in rdpmson-ab. The SQL statement used to generate this information is:

select a.abid, max(a.ataf), max(a.max_tonnage),
sum(b.quantity*c.sur_weight)

from rdairbase a, rdpmson ab b, rdprms c
where a.ab_type = 1
and a.ab id = b.ab id
and b.pms_name = c.pms_name
group by a.ab id

The function max is used since the group by clause requires all properties within the

select clause to be either defined as one of its arguments or a function. Thus, max is used

to satisfy this iequirement even though it never changes the value of the properties, ie. the

maximum ATAF number of those bases within the 2 ATAF is 2.

The class pins retrieved its data from the table rd-pms using the following SQL

statement:

select distinct pins name, pros weight
from rd_pms
where pios name POL"
and pms name "OTHE."
and pms name "RX"
and pms name "STDA"
order by prns_name

POLs weight is defined as zero when shipment is by surface vessels. Thus, it cost

nothing to tcansport. RX, STDA, and other are never used in the current version of TWX,

85

tPLACENENT RIRCR..(U) AIR AREI INST OP TECN
WRIONT-PATTERSON AF8 ON SCHOO0L OF ENGI. N 0 HARKENEN

UNCLASSIFIED DEC 89 AFIT/GCS/EUG/890-7 F/O /2

MN mhhmi

1=.

so are not needed by the knowledge base. However, removing these four lines will allow the

supplies to be used whenever the need arises.

The SQL statements needed to retrieve POL and spare differences at each supply base

required data from the tables rdairbase, rd-ac-onab, rd-aircraft, and rdpms-rn.ab. The

amount of POL needed by an aircraft is based on the number sorties that can be flown by that

aircraft and a surge factor. The number of spares required by a aircraft is also dependent

upon the number of sorties flown. The next two SQL statement show how data was retrieved

from the TWX database for POL and spares respectively.

select a.ab id,
max(d.quantity) -

sum(b.quantity*c.sortierate*c.surgefactor*c.polsor)
from rd airbase a, rd ac on ac b, rd aircraft c,

rdpms on ab d

where a.ab_type = 1
and a.ab id = b.ab id

and b.ac name = c.ac-name
and b.ac role = c.ac-role
and d.ab id = a.ab id

and d.pm._name = "POL"

group a.abid

select a.ab id,
max(d.quantity) -

sum(b.quantity*c.sorti _rate*c.s 9rn. factor*c.sparessor)
from rd airbase a, rd ac on ac b, rd aircraft c,

rdpms on ab d
where a.ab_type = 1
and a.ab id = b.ab id
and b.ac name = c.ac-name

and b.ac role = c.ac-role
a-,d d.ab id = a.ab id

and d.pms_name = "SPARES"
group a.ab id

PMS differences between existing and needed supplies were created by joining the

database tables rd-airbase, rd.acjrniab, rdstdids, and rd-std-mun. The properties needed

for the separate munitions were stored in a database structure called a view. This structure

86

is used to define a "virtual table" within the database that can be merged with other SQL

statements to produce data which cannot be created with a single SQL statement. The SQL

code used to zreate the view was:

create view max mun (abid, acname, ac role, mun_name,
quantity)

as select a.ab id, a.ac name, a.ac role, d.munname,
Lnax (d.q~a,.tit, ,*max (a.quantity)

from rd ac an ab a, rd airbase b, rdstI- Ilds c,
rd std mun d

where a.ab id = b.ab id

and b.abtype = 1
and a.ac name = c.ac name
and a.ac role = c.ac role

and c.pref load = d.load num
group by a.abid. a.acname, a.acrole, d.munname

This view called max-mun stores the amount of munitions needed for each plane on a

base. This amount is the maximum number obtained by checking the standard loads for every

mission an aircraft might be called upon to fly. The actual data used by the knowledge base

is determined by subtracting the amount in the maxmun view from the actual inventories

found in the table rd-pms-onab. The knowledge base must make eight separate queries in

order to retrieve the desired information on all eight munitions. The following SQL statement

shows a query for airbase shortfalls/everages of general purpose bombs, type 1:

select m.abid, max(m.mun name),
max(a.quantity) - sum(m.quantity)

from max mun m, rd.pms on ab a
where m.mun name = "GPI"
and a.pmsname = m.mun name
and a.ab id = m.ab id

group by m.abid

The rule control strategy again was set to "propagate when true", as described in the

last chapter. All contexts of a current rule were placed or the system's agenda only if the

rule evaluated to true. Inference categories were use to make sure the rules responsible for

checking overages fired before those responsible for logistic movement to the ba e. Below

are a list of hypotheses. Their inference categories are shown in parentheses if their are the

categores are greater the one (the default).

add pol_from_supply base:
supplybaseupdated

adc _spares_from_supply__base:
supplybaseupdated

addspares_fromsupply_basewith over:

looking_forlargest_overage
add_????_from_supplybase:

supplybase_updated
add_????_fromsupplybasewithover:

looking_for largestoverage
current base set:

addpolfrom supply_base
Edd_soaresfromsupplybase
a f a..._from supplybasewith over(2)
add_????_from supply base

add_????_from supply base with over(2)
readyfor nextbase(-1)

data-loaded:

current baseset
looking_forlargestoverage:

looking_forlargestoverage(3)

overagessentback
overages_sentback:

supply baseupdated
ready fornextbase:

current base set
supplybaseupdated:

current base set

Updates to the TWX database again used the IF-CHANGE utility and the knowledge

base object "update". After movement calculations were performed, the object's boolean value

was changed by a rule to true. This action initiated updates to the tables responsible for PMS

differences and the current base's tonnage limit.

Th -',! responsible fe r-ding the largest overage available must be evaluated to true

at least once in order to propagate the next rule after the largest overage is found. This again

88

required the initialization of object properties using the ORDER-OF-SOURCES mechanism.

With this program "max-overage.diff" was set to zero. This ensured a true evaluation of the

rule if there existed at least one positive difference, eg. an overage.

The initiation of the knowledge session was implemented using the FORMS-INPUT

program in Nexpert. After loading the knowledge base, the program suggested data loaded,

which launched the knowledge process.

6.3 Summary

The current version of the logistics knowledge base reiies on the TWX constraint that

all shortfalls can be alleviated. This, however, is not always the case in the real world.

A suggested enhancement might be to ailow PMS transfers from bases other than the

supply base that have overages or might not be capable of generating aircraft sorties due

to substantial damage. This would improve the knowledge base's emulation of actual battle

scenarios and release it from the TWX environment.

89

VII. Conclusions and Recommendations

7.1 Summary

The main focus of this research was providing a means of automating the AAFCE phase

of the Theater Warfare Exercise. By utilizing an Al expert system shell, the goals as stated

in the introduction chapter of this thesis were realized. Three knowledge bases were created

through the use of the Nexpert Object development environment. Each knowledge base,

independent of the others, fulfilled the requirement as set forth by the personnel at the Air

Force Wargaming Center.

The actual automation of the planning section of the Theater Warfare Exercise could

have been realized through the use of a procedural language and not a rule based expert

system. However, this research was cited as the first of many with the final goal of totally

automating the red side of TWX. The automation of target and aircraft selection, along with

actual strategy evaluation would have been severly restricted if the only developmental tool

used was a simple programming language. This research's largest contribution was finding

a flexible developmental platform for the work ahead and creating a design model and its

methodologies that will facilitate the development process for those who follow.

The knowledge base for the automation of nuclear strike aircraft replacement maintains

a very simple, but effective, heuristic for sustaining the desired number of aircraft at their

designated bases. The addition ul this knowledge base will provide the red player with an

extra fifteen to thirty minutes of time that can be devoted to the ATAF phase of TWX.

The knowledge base responsible for aircraft beddown increases the amount of extra time

that can be utilized by the red player by a minimum of one hour. This represents a decrease

in AAFCE planning of over twenty percent.

90

The logistics movement knowledge base removes the most mechanical section of the

AAFCE phase. The red player, now, does not have to waste thirty minutes to an hour on a

section that requires no more strategy that the ability to add and subtract, but is none the

less a time consuming facet of the AAFCE phase.

The ability to execute three programs that complete their necessary functions within

minutes after L i have beer, initiated is a _-re-at improvement over the two to three hours of

work spent looking at numerous reports, worksheets, and computer displays. The freedom

from these tedious tasks will permit the red players to provide a higher quality Cyercise since

a significant amount of their time will now be spent on target selection and prioritization.

7.2 Recommendations for Further Work

This thesis only completes the first step in automating the red player tor TWX. Now

that a developmental environment has been evaluated and a functioning application has been

produced, the ATAF section of TWX should be automated. The selection of aircraft for a given

mission and later the selection of the actual mission should be considered as the next two

levels of automation within TWX

Nexpert Object provides numerous means by which an r'(pert system shell can be

executed. With the transition of the TWX database from the Ingres RDBMS to the Oracle

RDBMS, the opportunity for creating a new platform for developing, generating, and operating

new expert shells is available. Using the relational database's Applications-By-Forms tools

and embedded code might provide a standardized means of utilizing an expert shell within

TWX.

Finally, the area of exercise evaluation and comparison should be addressed with the

use of expert system shells. Using a fully automated version of TWX with the same red

strategies should allow red players to evaluate games played by different student seminars,

91

thus providing a means to determine which student team was the best. A second application

of this type of system mnigbt be to automate the blue side of TWX and judge the merit of

different red strategies. This would render a more effective and flexible lesson to the blue

teams.

92

Appendix A. User's Manual

A. I Introduction

The software for this thesis was originally slated for use on a DEC GPX workstation

networked to a Microvax III which hosted the Ingres RDBMS version of TWX. However, the

personnel at the Air Force Wargamming Center received some new equipment; specifically

Sun 386i workstations. The decision to transfer TWX to the Sun's became a little more

difficult when it was determined that the workstations would use the Oracle RDBMS instead

of Ingres. This required a complete makeover of the TWX database and a revision in the

Nexpert Object software order. Nexpert was originally to be hosted on the GPX workstation

under the VMS operating system, but the Sun's are a Unix machine. Luckily, one of the many

facets of Nexpert was that it runs on several machines, and the Suns happened to be one

of those platforms. HOWEVER, the Oracle and Nexpert software never arrived before this

thesis was completed.

Thus, this thesis was based on the IBM AT version of Nexpert with all database

communications simulated using Nexpert's database base format (see the programmer's

manual for more information.) The SQL statements developed by this thesis were fed to the

iWX database on the DEC Microvax III. The results were stored in files and downloaded to a

Zenith 386 PC. The database files were then formatted into Nexpert's database structure and

use by the knowledge bases.

The rest of this manual is broken into two sections. The first section deals with where

to find the SQL statements used to create the data files needed by the knowledge bases and

how they were created. The second section deals with how Nexpert was implemented on the

microcomputer and where to locate the numerous files needed to run the knowledge bases.

It should be noted that while the three knowledge bases created by this thesis are only

imi lations, the rules used to generate the sessions are correct and will only need a small

93

amount of changing when they are uploaded to the Sun 386i. The only reason that these

sessions are considered simulations is that the data used by the knowledge bases is not

dynamically retrieved from anl saved in the actual TWX database.

A.2 TWX Database Files and Operations

All data files used by Nexpert were generated using the Ingres Interactive SQL program

(ISQL) on a DEC Microvax II. The Microvax which hosts the TWX database is called RAVEN.

A seminar was created from the TWX master database, TWXMSTR. The seminar number

used for this thesis was 3. A seminar is created by using the TWX database control menus.

The TWX controller is executed by entering the following command:

twxcom

Entering option 1, "Create a new seminar database", produces a prompt asking for the

seminar number. This command creates the seminar by creating the database, TWX3, where

the seminar number chosen was 3. All SQL statements are then applied to TWX3. When

using the ISQL program it is best to first change directories to a place where you can save

and retrieve session outputs to files. All data files were saved in a directory on RAVEN. The

command for setting the default directory to the TWX source directory is:

set def DUA 1./mroth. dnarken. Lu'xj

The directory is shown below:

Lrc~tory DJAI: [MROTH.DHARKEN.TWX]

AATTAC?. SyL; 1 AG.DB; 1 ASTRIKE.SQL;2 AUG.SQL;1
' 'AM.DAT;l r)IFAMT.SQL;!] DIFAIMR.DAT;1 DIFAIMR.SQL;1

94

S L 1 D Di&W DA-; I I'<,2PU . I

LI D I FGP. AT; 1 D1FCSB.SQ;

1D', FGP2 .DA-;1ID £FC-P2 .SQL; 1
D I P SL 3 DIFPR. SQL;i M AXTC:N. SQ-; 4

-W. 1 PAI T, , S PDAC AL AB.DAT;2 RLD AC AL AB. SQ'L;~

A~~ ~ I~s BA A ,_ ATF : P-"-:RCPA;T. L)AT;?' Pri ARCIPAFT

A listing. of w hat cac(h file contain-- can be found by looking at the file READI)MF LIS.

This ran he accomplished b.V typing:

type /pa reauj(I o. us

The ISQI. environ meat is executed by' entering:

isqiI tu'x3

You can then create, load, (;splav. or output any legal SQL statement that uses data from

the 7VVX3 dtatahase. The outputs can he saved to a file which can then be transfer-red to

the microcomputer using the Xmodem communications protocol. The '.-tial command for

)nwiloading ,a file is:

xr-nodem filenamne

A secondary prompt then asks for the commanuds Lo bend the Nol In t1' micy-ocomrnit-or. This

command is simply:

st filename

95

It is useful to think of the command st as "sent text." Once data has been downloaded

to the micror''-',uter, it is Formatted for use by Nexpert Object. This is discussed in the

progra .,i~aer's manual.

A . Ne-,pert Files and Operatioris on the PC

The microcomputer environment consists of the following:

*)neo Zenith :N63 PC- with 1 Meg of memnory on the mother board, one 360K floppY di1sk

drive, aind wne 1. 2M floppy disk drive

*:3 M abtsof Expanded Memory

*Zenith MS-DOS Version :3.30-1

*Microsoft \\indow.s 38 6 Version 21)

*Logf-It7h Moise

SO NU egabytes of hardisk space

o DEC LN03R postscript printer

Nexpert Object runs under the windowing environment provided by Microsoft Windows.

The only changes necessary to Microsoft Windows is to add the following lines to the file,

winini, in the windows directory:

kb=e:\ nexpert\ nexpert ^.kb
frmn=e:\ nex pert\nexpert .frm

These commands, placed in the extension section, tell windows to execute nexpert

%wh,-tevf'r files with the extensions '.kh and -.frm are selpctpd. The filename of the selected

file, will then he pasdto Nexport, as a parameter, thus loading the knowledge base or input

form,

96

All Ne.xport tilos can be found in the directory, e:\ru'xpert. It is important the Your !)(S

t'nVIroUnrnental variable, PATH, contain the Nexpert and Windows Directorie.s. Otherwise you

will szee numerous FI LE NOT FOUND error.

For each major section of this thesis, a unique knowledge base was created. The.s(

knowledge bases can be found in their own directories on drive E. The following shows 'he

dilrectory pathniame and a brief description of the three knowledge bases:

* e: hharkennxpfiies' strike - knowledge base for the automation of nuclear strd4 t,

o i rcrlf t 1replac(Incfnt

" e: hhiarken nxpfiles heddown - knowledge base for the automation of' aircraft bed-

dowvn

* e: hiharken nxpfilcs'Iog - Knowledge base for the automation of loCgistics rr-ovenet

T'he Ii rectorY containing the strike aircraft replacement knowledge base is shown be low:

E i3 AF7T E;

Cv cf : LEI\RKN\NX 'STRI FF

<DP, 829-8) 10:8
<DiC> 8-2- 10:38a

BA 8' -28-99 1 2 : 2 3 p
- 8-~2S-89 3 : 4 9 p

- ~ 7 8-24-89 2:49p
" 7 E, t,\KHP-" 631 8-24-89 5: 09p

SIFIE K 31 8 289-89 l 2 3 9

-P473 8 8-89 12: 20r
10 3 8-23-891 6:24p

- r'~ r' 631 8-04-89 4 9

E~ AK ''09 681 8-28-89 5:3(;P

C 24 4 1 8-24-89 2:4 7 p

61 8-28-89 12 3 5

A, , 4 77 P, 28-- 0 Op
A 103 8 - 2-8

I-) ':p7 O 1 3-54-39 4: 1
1,T :Vll Y%3 H- P3 '.4

97

REROLE FRM 1399 8-28-89 5-44p
STRIKE FRM 1196 10-06-89 2 :4 1p

STRIKE, KB 10920 3-28-89 5 :3 6p
22 File(s) 120832 btes free

DEMO.BAT is an executable batch file that runs windows and loads nexpert with the

input form that will start the knowledge session.

RESETBAT is an executable batch file that resets the data files *.DB) by copying the

*.BAK files to their respective filenames, ie. AATJACK.BAK r AATTACK.DB. Before -unnng

the demo, RESETBAT should be xecuted first.

CONVERTEXE is an executable 'C' program that takes reports generated by Nexpert

and wTaps the cutput lines to 80 characters so they can be printed on a dot-matfix printer.

The source code for this program is in CONVERTC.

The *.DB files are the data files used by Nexpert Object. Theses files are in the Neypert

Database format. The data files are read and updated during a knowledge session. The *.BAK

files are used to reset the data after a knowledge session has run. ASTRIKE.DP contains

data on the actual number of strike aircraft at an airbase. AA:TTACKIDB contains data on

the actual number of attack aircraft at an airbase. AUG.DB contains the type and number of

attack aircraft available at the augmentatic,, base. AUGM.DB and REROLE.DB are log files

that keep track of the type of aircraft and quantity of aircraft moved for the augmentation

base and reroled respectively. NXPDB.BAK is used to create these files before a session.

RSTRIKE.DB is the number of strike aircraft required at an airbase.

The *.FRM Files are the input forms used by Nexpert. These files are command

scripts that Nexpert compiles that can lad and execute a knowledge base. These files

are also responsible for the display of session information to the user. STRIKF.FRM is

the file responsfle fr r the loading and the execution of the knowledge base. REROLE.FRM

displays the type and quantity of aircraft that are reroled on airbase. AUGM.RM displays the

98

receiving airbase number, aircraft type, and quantity of aircraft moved from the augmentation

base.

STRIKE.KB is t1_ ASCII file containing the knowledge base used by Nexpert Object.

This file can bp ported to other hardware platforms running Nexpert and then successfully

loaeded on the new machine.

The directory containing the aircraft beddown knowledge base is shown below:

Volume in drive E is AFIT ENG

Directory of E: \HHARKEN\NXPFILES\BEDDOWN

<DIR> 8-29-89 10:39a
<DIR> 8-29-89 10:39a

DEMOI BAT 28 9-14-89 2 :2 3 p
DEMO2 BAT 28 9-14-89 2:23p
RESET BAT 117 9-11-89 3 :39p

CONVERT EXE 9287 8-24-89 2:48r

ACALLOW BAK 7388 9-12-89 5:15p
AUGMBASE BAK 672 9-07-89 5:25p
NXPDB BAK 175 9-07-89 4:44p
ACALLOW DB 7388 9-12-89 5:15p

AUGMBASE DB 672 9-07-89 5:2 5p
ACONAB DB 175 9-07-89 4:44p
BEDDOWN FRM 1551 9-06-89 4 :59p
STARTUP1 FRM 1241 10-06-89 2 :3 9p

STARTUP2 FRM 1241 10-06-89 2 :4 0p
BEDDOWNI1 KB 11688 9-14-89 2 :22 p
BEDDOWN2 KB 14722 9-14-89 2 :03p

17 File(s) 120832 bytes free

DEMOI.BAT executes the demo for the knowledge base, BEDDOWN1. This knowledge

base beds down aircraft as quickly as possible. DEMO2.BAT executes the demo for the

knowledge base, BEDDOWN2. This knowledge base beds down aircraft according to Red

regiment size requirements. DEMOI.BAT and DEMO2.BAT executes STARTUPI.FRM and

ST,4RTUP2.FIM respectively

ACALLOW DB contains data on aircraft types and the airbases where they are allowed to

be stationed. AUGMBASE.DB contain the type and quantity of aircraft at the augmentation

99

base that need to be moved. ACONAB.DB is the log file that keeps track of aircraft

movement by recording the receiving base number, aircraft type and aircraft quantity.

STARTUP1.FRM loads and executes BEDDOWN1.KB and STARTUP2.FRM loads and

executes BEDDOWN2.KB. BEDDOWN.FRM is responsible for displaying the receiving air-

base number, type of aircraft, and quantity of aircraft sent from the augmentation base.

The directory containing the logistics movement knowledge base is shown below:

Volume in drive E is AFIT ENG
Directory of E:\HHARKEN\NXPFILES\LOG

<DIR> 9-15-89 3 :56p
<DIR> 9-15-89 3:5 6p

DEMO BAT 27 9-25-89 2 :15p
RESET BAT 483 9-20-89 8:04p

DIFATSM BAK 73 9-20-89 2 :30p
DIFAIMI BAK 632 9-22-89 l:10p
DIFAIMR BAK 613 9-22-89 1:2 3p
DIFCBUl BAK 433 9-20-89 2 :32 p

DIFCBU2 BAK 433 9-20-89 2 :35p
DIFGB BAK 325 9-20-89 2 :37 p

DIFGP1 BAK 433 9-20-89 2:39p

DIFGP2 BAK 325 9-20-89 2 :41p
DIFPOL BAK 141 9-20-89 8:1 2 p
DIFSPR BAK 169 9-22-89 1:0 9p
TONNAGE BAK 365 9-22-89 1:11p

WEIGHTS BAK 325 9-20-89 6:5 2 p
NXPDB BAK 157 9-20-89 4:33p

BASE21 DB 468 9-22-89 4:43p
BASE98 DB 312 9-22-89 4:42p
DIFAIMI DB 632 9-22-89 4 :42 p
DIFAIMR DB 613 9-22-89 4 :43 p

DIFATSM DB 73 9-20-89 2 :30p
DIFCBUl DB 433 9-20-89 2:32p

DIFCBU2 DB 433 9-20-89 2:35p
DIFGB DB 325 9-20-89 2:37p
DIFGP1 DB 433 9-20-89 2:39p
DIFGP2 DB 323 9-20-89 2 :4 1p
DIFPOL DB 141 9-22-89 4:42p

DIFSPR DB 169 9-22-89 4 :4 3p

TONNAGE DB 365 9-22-89 4 :4 3p

WEIGHTS DB 325 9-20-89 6:52p
STARTUP FRM 1241 10-06-89 2 :4 0p
LOG KB 21319 9-25-89 2 :2 8p

33 File(s) 122880 bytes free

100

- -k6 i i

DEMO.BAT is an executable batch file that has Nexpert compile STARTUPFRM which

in turn loads and executes LOG.KB.

DIFF????.DB are the data files that contain the difference between the existing quantity

of PMS and the required quantity, eg. DIFFCBU1.DB contains the differences for cluster

bomb units, type 1, for all airbases. A positive number depicts an overage while a negative

number shows a shortfall. BASE21.DB and BASE98.DB are log files listing the quantity of

supplies being moved from and returned to their respective bases. A negative quantity shows

supplies have been move to other bases. A positive quantity shows supplies have returned

from other bases. TONNAGE.DB contains the existing tonnage and maximum tonnage for

each airbase. WEIGHTS.DB contains the PMS name and weight for all legal supplies.

A.4 Summary

To execute a knowledge session, simply change to the directory containing the knowledge

base desired, execute the command RESET, and enter the command, DEMO. This will

hopefully reward you with a successful run. If not it might be wise to make sure all the files

listed above are found in the correct directories.

101

Appendix B. Programmer's Manual

B. I Introduction

This manual is not what one might expect after reading through those created for

procedural languages. Most programmer's manuals are basically an application's code that

has highly visible and readable comments. Unfortunately that is not the way the Neuron Data

Corporation envisioned it. All components of a Nexpert knowledge base are encapsulated

within a sngle ASCII file. However, this file was not created for the average programmer's

reading pleasure. There are no facilities for the use of comments or indentation for legibility.

In other words, there are only two things that can use this file; the Nexpert System software

and a Neuron Data Corporation engineer.

Not all is lost; Neuron did provide a meager attempt at resolving this oversight by

allowing the user to print a Nexpert editor's contents. These editors include:

" the Class Editor

* the Object Editor

* the Rule Editor

" the Context Editor

• the Property Editor

In the IBM AT version that I used, there was no way to send the output to a file. Thus I had

to use a re-direction utility to send data destined for LPT1 into a MS-DOS file. Here I met

with another problem. This time it was with Microsoft Windows. Output to the printer was

sent in 256 character lines. You can imagine what this looked liked when printed on an 80

column CRT. To correct this I wrote a small C program that breaks lines every 79 characters

and adds a carriage return/linefeed. This worked quite nicely until you tried to understand

102

the contents of the files. I finally had to go and manually place line breaks and tabs within

the files to make them legible.

I believe that many of these problems arose from the early version of Nexpert that I

used. I am quite sure that most of aggravation I had will not be found once the Sun 386i

version of Nexpert is installed. However, you as a programmer will still need to take the

data files and manually indent and comment them so that another programmer can read and

hopefully understand what you have accomplished.

The next five sections deal with each editor in Nexpert and how I used them to document

my knowledge bases. The final section deals with the Forms Input Utility for controlling

knowledge base execution and output. In all these sections I use my knowledge base

responsible for nuclear strike aircraft replacement as an example.

B.2 The Class Editor

The class editor is the first utility used in creating a knowledge base. Here you create

the classes and subclasses needed for the transferring data between the database and the

knowledge base. The steps necessary for creating a class are as follows:

1. Start the class editor

2. Select the new class option from menu

3. Enter the class's name

4. Enter subclasses (if any)

5. Enter properties

6. Select the save class option from menu

After the selecting the save class option, you will prompted for the actual type of each

property. The four types of properties used are numerical, string, boolean, and special. If

103

you make a mistake when entering property types you will have to delete the property from

the class and change the property type by calling up the property editor. If you name any

subclasses they will be automatically created with properties from the parent class. This

inheritance strategy can bc changed, but I found no reason to do so.

By selecting the print option within the class editor and by redirecting the printer

output to a file, I was able to document the classes within the knowledge base. There is an

option to print the data to a file, but in the version I used, that particular function was not

implemented. After saving the file I then placed comments within the code using the syntax

for programs written in C. It should be noted that this file can never be used by the knowledge

base and if you need to make a change, the above procedures will have to be repeated.

Below is thc file that I creatcd for the nuclear strike aircraft repl]-ement knowledge

base's classes.

/** *** ******************* **

Name: Classes for the Nuclear Strike Aircraft Replacement KB
Author: Capt H. Dallas Harken

Date: 1 October 1989
Version: 1.0

Software: Nexpert (IBM AT) Version 1.0

Description: This file contains all knowledge base classes for the
nuclear strike aircraft replacement KB. Properties
and class relationships are also included.

This file was created using the PRINT option within

the Class Editor.

CLASSES:

airba3e
PROPERTIES:

ab id = (Numerical) /* Airbase Id Number */
CHILDREN:

stk ac on ab
atk ac on ab

104

aircraft
PROPERTIES:

ac-name = (String) /* Aircraft Name, Eg. M21 */
ac role = (String) /* Aircraft Role, Eg. A,C,S,etc */

CHILDREN:

stk ac on ab

atk ac on ab

atk ac on a
PROPERTIES:

ab id = (Numerical) /* Airbase Id Number */

ac-name (String) /* Aircraft Name, Eg. M21 */
ac role = (String) /* Aircraft Role, Eg. A,C,S,etc */
oct quantity = (Numerical) /* Actual Quantity of Strike

Aircraft on Airbase */
atk_quantity = (Numerical) /* Actual Quantity of Attack

Aircraft on Airbase */
augquantity = (Numerical) /* Actual Quantity of Attack

Aircraft of Same Type on
Augmentation base */

reqquantity = (Numerical) /* Required Quancity ot Strike
Aircraft Needed on Airbase */

PARENTS:

airbase
aircraft

stk ac on ab
ab id = (Numerical) /* Airbase Id Number */
ac-name = (String) /* Aircraft Name, Eg. M21 */
ac role = (String) /* Aircraft Role, Eg. A,C,S,etc */
act_quantity = (Numerical) /* Actual Quantity of Strike

Aircraft on Airbase */
reqquantity = (Numerical) /* Required Quantity of Strike

Aircraft Needed on Airbase */

PARENTS:

airbase

aircraft

B.3 Rule Editor

The rule editor is the most complex utility in the Nexpert developmental environment.

This is due to the numerous tasks that can be accomplished. Thus the file created with this

editor is the longest and hardest to make legible. The general steps for creating a rule include

105

1. Start the rule editor

2. Select the new rule option from the display

3. Enter the rule's hypothesis

4. Enter the rule's condition(s)

5. Enter the rules's actions(s)

6. Select the save rule option from menu

If you utilize any of the database options, another screen will prompt you for inforiuatirn such

as database type and database/knowledge base conversion parameters. The database utility

screen allows you to choose from a list of available database formats. For this research I

used the Nexpert database format or NXPDB. One of the hardest things to understand when

first using the database window is how to match a database table and its attributes with a

knowledge base's class and its properties. A tuple in a relational database table maps to an

knowledge base object through the use of a name filter. This filter has the following format:

"rootl"!fieldV"root2"!field2!

root1 and root2 are simple character strings that will be concatenated to the actual database

attributes that have the name field1 and field2. Let's look at an example. Say you have the

database table, rdairbase, with the attributes, ab-id and status. Knowing this, you create a

KB class called airbase and you give it the two properties, ab-id and status. Below is a table

with sample data.

ab-id status

23 1.00

24 0.50

48 0.25

106

The quest'n now is how do you get these two structures together. First you must note that

every object in a knowledge base must be unique. Thus you will need to use the ab-id as

a unique qualifier. However you can not have an object that starts with a number. (This

is not explained in the Nexpert manual.) In order to overcome this small problem you

use the root strings to make the objects more understandable. You then create the name

filter, "ab"!ab-id!, and link the objects to the KB class aircraft. Database attributes are then

transferred by mapping them to KB properties. The final result of the transfer is the creation

of 3 objects within the KB class aircraft. The names of those three object are ab23, ab24, and

ab48. For more information look at the Database Links Chapter in the Nexpert manual.

The print to file option for the rule editor does work! After downloading the rules to a

file, I then added enough tabs and comments to help other understand what each rule was

responsible for in the knowledge base. The actual description of the keywords within the

rules can be found in the Rules and Database Links chapters of the Nexpert manual. The

following is the rules section of the nuclear strike aircraft replacement knowledge base.

Name: Rules for the Nuclear Strike Aircraft Replacement KB
Author: Capt H. Dallas Harken

Date: 1 October 1989
Version: 1.0

Software: Nexpert (IBM AT) Version 1.0

Description: This file contains all knowledge base rule for the
nuclear strike aircraft replacement KB. The format
is:

If
CONDITION (S)

Then HYPOTHESIS
is confirmed.

ACTION (S)

This file was created using the SAVE TO FILE option

107

within the Rule Editor.

RULES:

Hypothesis: bring_atk ac fromaug ab all

Conditions: This rule is fired if
1. The required number of strike aircraft is greater

than the actual number of aircrafL on the airbase

2. The number of attack aircraft at the airbase is 0

3. The retrieval of the actual number of attack

aircraft at the augmentation base is successful

4. The number of needed attack aircraft cannot be

completely satisfied by the aircraft located at the

augmentation base

5. The number of attack aircraft at the augmentation

baso is greater than 0

Actions: 1. Assign abid to temporary object, augm temp

2. Assign acname to temp. object, augm temp

3. Set number of attack aircraft left on augmentation

base to 0

4. Update Database (see Metaslot for object, augmtemp)

5. Reset Rule for Re-Rolling Aircraft

NOTE: Attack and strike aircraft must be of the same type,

eg. M21A <--> M21S

Rule 1

If

<atk ac on ab>.atkquantity+(<atk ac on ab>.actquantity-

<atk ac on ab>.req_quantity) is less than 0.00

And <Iatk ac on abl>.atk quantity is precisely equal to 0.00

And Retrieve aug.db @NXPDB;@NAME="ab "!abid!;@PROPS=aug_quantity;

@FIELDS=quantity;@ATOMS=<Iatk ac on abl>.augquantity;

And <atk ac on ab>.augquantity±(<atk ac on ab>.actquantity-

<atk ac on ab>.req quantity) is less than 0.00

And <Iatk ac on-abl>.aug quantity is greater than 0.00

Then bring atk ac from augaball

is confirmed.

And aug_allflag is set to TRUE
Arid <Iatk ac on abl>.ab id is assigned to augm temp.id
And <Iatkacon abl>.ac name is assigned to augm-temp.ac
And 0 is assigned to augm temp.left
Arid <latk ac onabl>.augquantity is assigned to augmtemp.diff
And Reset rerole atk ac from same base all

108

And Reset rerole atk ac from same base some

Hypothesis: bring atk ac from_aug ab some

Conditions: This rule is fired if
1. The required number of strike aircraft is greater

than the actual number of aircraft on the airbase
2. The number of attack aircraft at the airbase is 0
3. The retrieval of the actual number of attack

aircraft at the augmentation base is successful
4. The number of needed attack aircraft can be

completely satisfied by the aircraft located at the
augmentation base

Actions: 1. Assign ab id to temporary object, augm temp
2. Assign ac name to temp. object, augmtemp
3. Set number of attack aircraft left on augmentation

base to quantity available - quantity needed

4. Update Database (see Metaslot for object, augmtemp)
5. Reset Rule for Re-Rolling Aircraft

NOTE: Attack and strike aircraft must be of the same type,
eg. M21A <--> M21S

Rule 2

<atk ac on ab>.atkquantity+(<atk ac on ab>.actquantity-
<atk ac on ab>.reqquantity) is less than 0.00

And <Iatk ac on abl>.atk quantity is precisely equal to 0.00
And Retrieve aug.db @NXPDB;@NAME="ab "abid!;@PROPS=augquantity;

@FIELDS=quantity;@ATOMS=<atk ac on abl>.aug_quantity;
And <atk ac on ab>.aug_quantity+(<atk ac on ab>.actquaitity-

<atk ac on ab>.req_quantity) is greater than or equal to 0.00

Then bring_atk ac from aug ab some
is confirmed.

And augall_flag is set to FALSE
And <Iatk ac on abl>.ab_id is assigned to augm temp.id
And <latk ac on abl>.acname is assigned to augmtemp.ac
And <atk ac on-ab>.aug_quantity-abs(<atkacon ab>.actquantity-

<atk ac on_ab>.req_quantity) is assigned to augmtemp.left
Ard abs(<atk aco2b>.cct_quantity-<atk ac on ab>.req_quantity)

is assigned to augmtemp.diff
Al Peset rerole atk ac from same base all
And Ponet rero]i atk ac from same base some

* *** *******A *** **** *

Qyp t W 1s: data loaded

109

ConJitions: This rule is fired if

1. The retrieval of the required strike aircraft data
is successful

2. The retrieval of the actual strike aircraft data

is successful

Acti)_,ns: Nuorne (See Rule Contexts)

O~e r~ivers~rilke.dhb NXPDB;@ADD;@NAME-"ab "!ab id!;
T 3 t ka ac-,,a In b@ PROP S=ab -id,ac name,ac role, req quantity;

E:- d, ac nare, ac -role,quantity;
r:3 -1 C-N1 DB " I b'ab id!;@PPOPS=act: quantity;

:t y, ' iTOM<Istk-__on_abl>.act quantity;

>:w on stk ac

.~s rule is fired if
The actual numbher of strike aircraft is iesz .tian rie
r _qu -.r eJ n u,-oe r

Pel-rievtu the actual ,iumher of atack aircraft oni r e
~Yaeof the cimre type as the strike aircraft

2. F'irgl rules resoonsie for re-rolinq air7craft

.te:~~ IeprAe ntalw anry tyop o:f ohetCr property
~he i'~ -hinIs~i ofa Ccmpariso)nr. nly -_urnerirc

b 15 illeqal

-- okac on ab>. req quant ity

tk ac ori hI> Ia tk a c o n _aLI

f V~kr Ab 9,XI -31a,-kNAM-'ab Cab id!

110

@PROPS=atkquantity;@FIELDS=quantity;@ATOMS=
<Iatk ac on abi>.atk quantity;

And rerole atk ac fromsamebase all is assigned to
rerole auk ac from same base-all

And rerole atk ac from-same base some is assigned to

rerole atk ac from same base some

Hypothesis: reroleatk ac fromaugab_all

Conditions: This rule is fired if

1. The required number of strike aircraft is greater
than the actual number of aircraft on the airbase

2. The number of needed attack aircraft cann.ot be

completely satisfied by the aircraft located at the
airbase base

3. The number of attack aircraft at the airbase
base is greater than 0

Actions: i. Let KB know all attack aircrart on airbase
are being re-roled

2. Assign ab-id to temporary ob3ect, res_temp

3. Assign acname to temp. object, res temp
4. Set number of attack aircraft left on airhse

base to 0
5. Update Database (see Metaslot for object, res temcJ

NOTE: Attack and strike aircraft must be of the same type,

eg. M21A <--> M21S

Rule 5
if

<atk ac on ab>.actquantity-<atk ac on ab>.req quantity

is less than 0.00
And <atk ac on ab>.atkqjantity <atk ac on ab>.actquan!t:ty-

<atk ac on ab>.req-quantity) is less than 0.00
ark ac on abl>.atk quartity is greater than 0.00

Then rrl atk ac from same base all
* s ' i f rm.ei .

rer le all flag is set to TPUE

A"i < ark ac on abi>.ab id is assigned to restemp.idi
An i <:ark ac on b >.ac name is assigned to res temp.ar:

:rji ,3 is assigned to resterp.left
I- -a k ac on ab >.atk quantitv is assigned to rcs

z' role atk)c frrr aughb all

iiI

Conditions: This rule is fiLed if

1. The required number of strike aircraft is greater
than the actual number of aircraft on the airbase

2. The number of needed attack aircraft can be
completely satisfied by the aircraft located at the
airbase base

Actions: 1. Let KB know not all attack aircraft on airbase
are being re-roled

1. Assign abid to temporrry object, restemp
2. Assign acname to temp. object, res temp
3. Set number of attack aircraft left on airbase

base to quantity available - quantity needed
4. Update Database (see Metaslot for object, restemp)

NOTE: Attack and strike aircraft must be of the same type,
eg. M21A <--> M21S

Rule 6
It

<atk ac on ab>.act quantity-<atk aconab>.req quantity
is less than 0.00

And <atk ac on ab>.atkquantity+(<atk ac on ab>.actquantity-
<atk acon aO>.req_quantity) is greater than or equal to 0.00

Then rerole atk ac from same base some
is ronfirmed.

And reroleallflag is set to FALSE
And <Iatk ac-on abj>.acname is assigned to rez_temp.ac
And <Iatk ac on abl>.ab id is assigned to res_temp.id
And <atk acor _ab>.atkquantity-abs(<atk ac on ab>.actquantity-

<atk ac on ab>.req_quantity) is assigned to restemo.left
And abs(<atk ac on ab>.act_quantity-<atkac on ab>.req quantity)

is assigned to res temp.diff

B.4 The Object Editor

The manual creation of objects is not generally needed when creating a knowledge base.

Most objects are created dynamically when reading data from the database. Howeve., therc

are a few objects such as flags and holding areas that can be entered by hand. The procedure

for creating objects is exactly like that of creating classes. You should note that the hypothesis

of a rule is also an object but it is constructed automatically by the rule editor. The principal

112

reason for using the object editor is that it allows you to add, delete, and modify the "order of

sources" and "if change" actions of the objects. These actions are known as metaslots.

The "order of sources" action for an object allows you to determine an object's property

values at anytime during a knowledge session. The most valuable action used is InitValue.

This action assigns a value to the cbject during the startup of a knowledge session. The

action Run'limeValue provides a means of changing an objects values while in the middle of

knowledge session. By setting the value of an object to unknown (using the reset command),

the Run 7rmeValue will be assigned to that object if it is ever evaluated by the inference

engine.

The "if change" actions is another means of controlling the knowledge session outside of

a rule's action set. One or more commands can be executed by simply changing the value of

an object. This is most commonly implemented by creating a boolean object and changing its

value from false to true. Actions associated with this metaslot are executed in the order in

which they were entered.

ou must also use the object editor to change the inference category of a hypothesis. The

use of inference categories was explained in my knowledge base design chapters. The default

inference category for a hypothesis is one. Increasing this number increases a rules priority

within the inference engine.

Below is the output from the object editor usiig the print option:

Ndme: Objects for the Nuclear Strike Aircraft Replacement KB
Author: Capt H. Dallas Harken

Date: 1 October 1989
Version: 1.0

Software: Nexpert (IBM AT) Version 1.0

Zescription: This file contains all KB objects, including the
hypotheses for each rule. Special attention should

113

be given to the ORDER OF SOURCES, IF CHANGES ACTIONS,
and INFERENCE CATEGORY sections of each object. If
these section do not exist assume the default values
are used.

NOTE: augtemp and restemp are the key objects used

in updating the database.

This file was created using the PRINT option
within the Rule Editor.

OBJECTS:

augallflag /* Boolean Flag for determining
if all planes at augmentation

base are moved */
PROPERTIES:

Value = (Boolean)

augm temp /* Object responsible for updating
augmentation base inventory and

aircraft movement log file */
PROPERTIES:

ac = (String)

diff = (Numerical)
ORDER OF SOURCES:

InitValue 0.000000

RunTimeValue 0.000000

IF CHANGE ACTIONS:
Do augmtemp.left "ab "\augm temp.id\.augquantity
Do augm_temp.diff "ab "\augmtemp.id\.atk quantity

CreateObject \augm temp.ac\ jatk ac on abi
DeleteObject \augm temp.ac\ Iatk ac on abi
Do augmtemp.left \augmtemp.ac\.augquantity

Write aug.db @NXPDB;@NAME=!ac name!;@PROPS=augquantity;
@FIELDS=quantity;

DeleteObject \augm temp.ac\
Write augm.db @NXPDB;@ADD;@NAME=!ab id!;@PROPS=id,ac,diff;

@FIELDS=ab id,ac name,quantity;@ATOMS=augm_temp
Do abs("ab_"\augm-temp.id\.act_quantity+"ab_"

\augm_temp.id\.atkquantity-"ab_"\augm temp.
req quantity) augm temp.left

Execute augm.frm @FRM;@WAIT;
Reset augm temp.diff

Peset bringatk ac from-augabsome
Ld Unknown (Numerical)
left = Unknown (Numerical)

Bring_atk ac from-aug-ab-all /* Hypothesis */

PROPERTIES:

114

Value = (Boolean)

bring atk_ac_fromaugabsome /* Hypothesis *
PROPERTIES:

Value = (Boolean)

data-loaded 1* Hypothesis *
PROPERTIES:

Value = (Boolean)

low-on-stk-ac /* Hypothesis *
PROPERTIES:

value = (Boolean)

rerole all flag /* Hypothesis *
PROPERTIES:

Value =(Boolean)

rerole -atk -ac -from same base-all /* Hypothesis *
PROPERTIES:

Value =(Boolean)
INFERENCE CATEGORY: 3

rerole -atk -ac -from-same-base-some /* Hypothesis *
PROPERTIES:

Value =(Boolean)
INFERENCE CATEGORY: 3

res temp /* Object responsible for updating
airbase inventory and
aircraft re-role log file ~

PROPERTIES:

ac =Unknown (String)

diff = 0.00 (Numerical)
ORDER OF SOURCES:

InitValue 0.000000

RunTimeValue 0.000000

IF CHANGE ACTIONS:
Do restemp.left 'ab - \res_temp.id\.atk-quantity
Do "ab_ \res-temp.id\.act-quantity+restemp.dif

"ab_-"\res -temp.id\.act quantity
Write astrike.db @NXPDB;@NAME="ab flab id!;@PROPS=

act quantity; @FIELDS=quantity; @ATOMS="ab"

\ res temp. id\
Write aattack.db @NXPDB;@NAME="ab "!ab id!;@PROPS=

atkquantity;@FIELDS=quantity;@ATOMS="ab"

\res_temp.id\
Write rerole.db @NXPDB;@ADD;@NAlIE=!ab id!;@PROPS

=id,ac,diff;@FIELDS=ab-id,ac-name,quantity;

@ATOMS=res temp
Do abs("ab "N res temp.id\.act-quantity-"ab"

115

\restemp. id\. reqquantity) restemp. left

Execute rerole.frm @FRM;@WAIT;
Reset restemp.diff
Reset rerole atk ac from same base some

id = Unknown (Numerical)
left = Unknown (Numerical)

B.5 The Context Editor

The context editor is responsible for determining which rules will be investigated by the

inference engine after the current rule is evaluated. Using the Propagate When True (PWT)

strategy any rule placed in context with the current rule will be placed on the system's agenda

if and only if the current rule's hypothesis evaluates to true.

The context editor modifies the relationship between rules by linking their respective

hypotheses together. The editor lists a rule's hypothesis and then allows you to add or delete

other hypotheses to the on shown. It is possible to place a rule in context with itself. This

allows you to create a "loop" within your knowledge base, and can be used to find the largest

or smallest value of numerous objects within a class.

Once again you have to use the print option within the editor to get a hardcopy of

your data. The following are the contexts used in the nuclear strike aircraft replacement

knowledge base.

Name: Rule Contexts for the Nuclear Strike Aircraft
Replacement KB

Author: Capt H. Dallas Harken
Date: 1 October 1989

Version: 1.0

Software: Nexpert (IBM AT) Version 1.0

Description: This file contains the rule contexts for the nuclear

strike aircraft replacement knowledge base. The top
most hypothesis is assumed to be that of the current

rule. Thus all indented hypotheses below it are those

116

in context with the current rule.

Those rules with no hypotheses directly below them have
no contextual relationships.

This file was created using the PRINT option
within the Context Editor.

CONTEXTS:

bring_atkacfrom aug ab all

bring atkacfrom aug_aball

rerole atk ac from same base all

rerole atk ac from same base some

bring atkacfrom-augab some

bring_atk_acfrom__aug_absome
rerole atk ac from same base all
rerole atk ac from same base some

data-loaded
low on stk ac

low on stk ac

rerole atk ac from same base all

rerole atk ac from same base some

B.6 The Property Editor

The property editor is rarely used since property types are automatically asked for when

a property is created through the use of the other editors. However if you need to change the

property type this editor is as functional as the rest.

The property editor also provides a means for printing all properties and their types.

This function is not really necessary since the output from the object and class editors also

117

show these properties and types. Below is the output of the property editor provided for the

sake of completeness.

Name: Object Properties for the Nuclear Strike Aircraft

Replacement KB
Author: Capt H. Dallas Harken

Date: 1 October 1989
Version: 1.0

Software: Nexpert (IBM AT) Version 1.0

Description: This file contains the object properties and their types
for the nuclear strike aircraft replacement knowledge
base. These values can also be found in the Object
and Class files.

This file was created using the PRINT option
within the Property Editor.

PROPERTIES: /* Descriptions can be found in the Object and Class
Files */

ab id (Numerical)

acname (String)

ac role (String)

actquantity (Numerical)

ark-quantity (Numerical)

augquantity (Numerical)

diff (Numerical)

id (Numerical)

left (Numerical)

req quantity (Numerical)

Value (Special) /* Default Value for Hypotheses */

118

B. 7 The Forms Input Utility

The forms input utility allows users to control a knowledge session the use of a command

script. This script can prompt the user, load the knowledge base, start the knowledge base by

suggesting a hypothesis, and report the actions of the inference engine to the user's screen.

This is as close to a procedural language as Nexpert gets. It even provides a means for

commenting your command files; but it has been removed from later versions due to

,r-ficts with the runtime version of the knowledge bases. Since I used version 1.0

of Nexpert I was able to make use of this utility. I used the command scripts to start the

knowledge session and report aircraft movement and re-roling operations. An alternative

solution for future efforts might be to make use of Nexpert's external interface with procedural

languages such as C or Fortran. This would allow the programmer to tailor the delivery

environment to the user's specific requirements.

The report forms for the knowledge bases are displayed by using the execute command

wX bi a riles action si.t or an object's "if change" metaslot. See the Nexpert manual for more

details.

The form below is used to start the nuclear strike aircraft replacement knowledge base.

jTHIS IS A COMMENT)

Filename: strike.frm

Author: Capt H. Dallas Harken

Ver/Date: 1.0/3 Aug 1989

Description: Startup form for Nuclear Strike Aircraft Replacement }
Knowledge Base

#evaluation (OFF)
#toggle(Transcript) f Turn off Transcript Window }
#L =p()
#ca >tion(Maintain Strike Aircraft)
#remove scroll()

119

#remove rnenu()
#fontsize ("24, 0")

#fontcolor("RED")
#ctext("AI Demonstration for Maintaining Nuclear Strike Aircraft")
#blankspace("LINES_-1")

#font size ("12, 8")
#f ontcolor ("BLACK")
#ltext ("The following Demo will demonstrate the use of the *b[Nexpert]")
#ltext("*b[Expert System Shell] for maintaining the correct number of")
#ltext("nuclear strike aircraft at specified bases.")
#blankspace ("LINES 2")
#ctext("Click on START to continue.") (Use Mousel
#blankspace ("LINES 1")
#button("START", OK, CENTER)

(The Real Work Begins Here

#loadkb(strike.kb) {Load Knowledge Base I
#suggest (data loaded)
#knowcess (Start Knowledge Session I

This second form reports aircraft re-roling opera tions.

File: rerole.f-r
Author: Capt Dallas Harken

Ver/Date: 1.0/3 Aug 89
Description: This is a report form used to show aircraft re-roling

operations

#evaluation (ON)
#remove menu()
#remove scroll()
#caption (rerole. frm)
#beepoC

#if(rerole-all-flag ==False) (Flag Set by Knowl edge Base

#fontcolor ("RED")

#fontsize ("24, 0")
#ctext("Re-role All Airt-raft From Same Base")
#blankspace("LINES 2")

#fontcolor("BLACK")
f ontsize (" 12, 6')

#ltext ("Attack Aircraft on the following base are being re-roled")
#ltext("to Nuclear Strike Aircraft. The total number of aircraft")

#ltext("needed will be re-roled.")

120

#blankspace("LINES_2")
#ltext(" AirBase I0: \res_ temp.id\"
#ltext(" AirCraft Name: \res_temp.ac\"
#ltext(" Number of Aircraft Re-roled: \res-temp.diff\"

#else

#fontcolor("RED")

#fontsize("24, 0")
#ctext("Re-role Some Aircraft From The Same Base")
#blankspace("LINES_2")
#fontcolor("BLACK")
#fontsize("12,8")
#1text("Attack Aircraft on the following base are being re-roled")

#ltext("to Nuclear Strike Aircraft. The total number of aircraft")
#ltext("needed exceeds the number of attack aircraft available on base.")
#ltext("The difference will be brought in from the augmentation base.")
#blankspace("LINES 2")

#ltext(" AirBase ID: \res-temp.id\"
#ltext(" AirCraft Name: \restemp.ac\"
#ltext(" Number of Aircraft Re-roled: \res temp.diff\"
#ltext(" Number of Aircraft Still Needed: \res_temp.left\")

#endif

#blankspace("LINES 2")
#button("Continue",OK, CENTER) { Use Mouse
#evaluation (OFF)
#know-ess() { Continue Knowledge Session I

The final form in the nuclear strike aircraft replacement knowledge base reports aircraft

movements.

File: augm.frm

Author: Capt Dallas Harken
Ver/Date: 1.0/3 Aug 89

Description: This is a report form used to show aircraft movement

operations

#evaluation(ON)
#remove menu()
#remove scroll()

#caption(mvaug.frm)
#beep ()

121

#if(augall flag == False) Flag Set By Knowledge Base

#fontcolor("RED")
#fontsize("24,0")
#ctextk";>ovz All Aircraft From Augmentation Base")
#blankspace("LINES 2")

#fontcolor("BLACK")
#fontsize("12,8")
#ltext("Attack Aircraft from the Augmentation base are being trans-")
#ltext("ferred to the following base for rerole to Nuclear Strike")
#ltext("Aircraft. The total number of aircraft needed will be")
#ltext("transferred.")
#blankspace("LINES 2")

#ltext(" AirBase ID: \augm temp.id\"
#ltext(" AirCraft Name: \augm_temp.ac\"
#ltext(" Number of Aircraft Moved: \augm-temp.diff\"

#else

#fontcolor("RED")
#fontsize("24, 0")

#ctext("Move Some Aircraft From Augmentation Base")
#blankspace("LINES 2")

#fontcolor("BLACK")
#fontsize("12,8")
#ltext("Attack Aircraft from the Augmentation base are being trans-")
#ltext ("terred to the following base for rerole to Nuclear Strike")
#ltext("Aircraft. The total number of aircraft needed exceeds the")
#1 xt("number of aircraft available at the augmentation base.")
#ltext("The difference will have to be brought in from other bases.")
#blankspace("LINES 2")
#itext(" AirBase ID: \augm temp.id\"
#ltext(" AirCraft Name: \augm temp.ac\"

#ltext(" Number of Aircraft Moved: \augm temp.diff\"

#itext(" Number of Aircraft Still Needed: \augm_temp.left\")

#endif

#blankspace("LINES 2")
#button("Continue",OK, CENTER) { Use Mouse
#evaluation (OFF)
#knowcess() { Continue Knowledge Session I

B.8 Summary

There not much left to say for documenting a knowledge base's code. My finnl rprnm-

mendation however is, if you have any questions, Look it up in the manual! Good-Luck.

122

Bibliography

1. Astrahan, M.P., Blasgen, M.W., Chamberlain, D.D., Eswaren, J.N., and others 'System
R: Relational Approach to Database Management," ACM Transactions on Database
Systems 1, 97-137 (1976).

2. Barr, A. and Feigenbaum, E.A.; Eds. The Handbook of Artificial Intelligence, Morgan
Kaufmann Publishers, Inc., Vol 1: 1981.

3. Brachman, R.J., Gilbert, V.P., and Levesque, H.,I. "An Essential Hybrid Reasoning
System: Knowledge and Symbol Level Accounts of Krypton," Artificial Intelligence and
Databases, Morgan Kaufmann Publishers Inc., 293-300 (1989).

4. Boar, Bernard H. Application Prototyping. John Wiley & Sons, New York, 1984.

5. Bodie, M.L. and Mylopoulos, J.; Eds. On Knowledge Base Management Systems, Springer-
Verlag New York Inc., 1986.

6. Brooks, Capt Michael. Developing a Database Management System and Air Simulation
Software for a Theater War Exercise (ADA189681). Master's thesis, School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, December 1987.
AFIT/GCS/ENG/87D-6.

7. Brodie, M.L. "Future Intelligent Information Systems: AI and Database Technologies
Working Together," Artificial Intr";gence and Databases, Morgan Kaufmann Publishers,
Inc,, 1989.

8. Car, Michael A. and others Building Knowledge Systems, McGraw-Hill, 1989.

9. Korth, H.F. and Silberschatz, A. Database System Concepts, McGraw-Hill, 1986.

10. Kross, Capt Mark S. Developing New User Interfaces for the Theater War Exercise
(ADA189744). Master's tht is, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH1, December 1987. AFIT/GCS/ENG/87D-19.

11. Levesque, H.J. and Brachman, R.J. "Knowledge Level Interfaces to Information Sys-
tems," On Knowledge Base Management Systems, Springer-Verlag New York Inc., 13-34
(1986).

12. Manola, F. and Brodie M.L. "On Knowledge-Based System Architectures," On Knowledge
Base Management Systems, Springer-Verlag New York Inc., 35-54 (1986).

13. Mylopoulos, J. and Brodie, M.; Eds. Artificial Intelligence and Databases, Morgan
Kaufmann Publishers, Inc., 1989.

14. Napheys, B. and Herkimer, D. "A Look at Loosely-Coupled Database Systems," Proceed-
ing of the Second International Conference on Expert Database Systems, 107-115 (April
1988).

15. Neuron Data Inc. Nexpert Object Fundamentals, Palo Alto, CA, Version 1.0 (IBM-AT),
1988.

16. Quick, Capt Darrell A. Adding Map.Based Graphics to the Theater War Exercise
(ADA205902). Master's thesis, School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB, OH, December 1988. AFIT/GCS/ENG/88D-16.

17. Roussopoulos, N. and M !opoulos J. "Using Semantic Networks for Database Man-
agement," Artificial Intelligence and Databases, Morgan Kaufmann Publishers, Inc.,
112-137 (1989).

123

18. Shortliffe, E.i. Computer-Based Medical Consultations. MYCIN, Elsevier New York,
1976.

19. Somsel, J. "NEXPERT Object and Humble: Object-Based Shells," Al Expert, Nov 1987.

20. Tanimoto, S.L The Elements of Artificial Intelligence, Computer Science Press, 1987.

21. Turing, A.M. "Computing Machinery and Intelligence," Computers and Thought, McGraw
Hill, 11-35 (1963).

22. Theater Warfare Exercise Handbook. Air Force Wargaming Center, Maxwell AFB, AL,
1988. Unpublished Manual.

23. TWX Soviet / Warsaw Pact: Operation Red Lightning. Air Force Air War College, Maxwell
AFB, AL, 1988.

24. Van Ilorn, Michael Understanding Expert Systems. Bantam Books, 1986.

25. Department of Defense. USAF CoS Constant Readiness Tasking. DOD Directive, Item 6.
Washington: Gov,rnment Printing Office, 4 August 1976.

26. Wilcox, Capt Kenneth R. Extending the User Interface /br The Theater War Exercise
(ADA202726i. Master's thesis, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH, December 1988. AFIT/GCS/ENG'88D-24.

124

Vita

Captain Harold "Dallas" Harken III was born on 8 April 1963 at Travis Air Force Bast,,

California, to Mr. and Mrs 11. D. Harken, Jr. He graduated with honors from Middleton ligh

School in 1981. ie then attended Clemson University on an Air Force ROTC scholarship and

received a Bachelor of Science in Computer Engineering in 1985. Following graduation. 2Lt

Harken was assigned to the 7th Communications Group at the Pentagon, where he serv d as

a UNIX system administrator and programmer. In 1988 he was accepted by the Air Forrc(

Institute of Technology as a masters student in the School of Engineering. After aduatien

In December (1989), Capt Harken will be assigned to the Air Force Wargaming Center at

Maxwell AFB, Alabama.

Permanent address: 1,133 Birthright Street
Charleston, South Carolina
29407

125

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMB No 07040188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
. ' , If'

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
_____rove(for puV 1 i C ro - cse;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE (]i- tr i;ut.i or) ln] i Iri tC('

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

-~t, /./ -- , '- 7

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION7 (fAIf p liTqple)< '}oci of ,T"qirlCori rrj AI-i' , ,

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
F t "'ot Insti t1te of ecIn o ogy

iq.t-Pateron Ir, t oI. 45433-6523

Sa. NAME OF FUNDING!SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

-' ! 'c'~ 1 YJ,1V i miCenlter l.;,UcA['PF/vTr,

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
",36112- 32 PROGRAM PROJECT TASK VVORK UNIT

ELEM1ENT NO NO NO '-CCESSION NO

11 TITLE (Include Security Classification)
7 Extrt nystom for ju(t-oja til(iMuclear Etri.l:e ?-ircr-aft Pep2 anecnt. , ." I r-er-

,, anr T loj i. L.i L. c ,'.e cnt for the Vbea ter -r fare x' rec (. .. '' ' .

12 PERSONAL AUTHOR(S)
'ual) P . ,'arke' 1 P, . 3. , Talt-ai 5, PAG COU

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
.. Vcs:n [[FROM TO !9R9 Pecomber

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

_ I I"arjcgamjnnq, Expert 1'sytenrF, D tahaso, Pro-to t i ,n

19 ABSTRACT (Continue on reverse if necessary atrd identify by block number)

r oS J ,AI nor: ,ar] T . oh, Major, t-S? j .

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

E IJNCLASSIFIED'JNLIMITED n SAME AS RPT El)TIC USERS ,l'r W .SS i .Fn

'2a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFTCE SYMBOL
a,_rrk '. ta}, P jar, o TY>.t' (53) 5- 7

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCL. SS IZ'FI_

Ili l, 1livat er WVar lExtrcise ('1WX) is a five (lay, two sidIed, t heater level, air-power eiipoviieit (Icisili

o ,'liuo exercise. ILf dtfclstots repiiredl are Ilpical of t hose fiat, an air coiitIoiieilt coiiiiiniidlr au1
Siil

%%,11 iiitake. 1WX NIs a t wo-siled guame where the lue team is playedI by a St ileiit sci iir aild th lId

i:mis plecel 1Lv one, or miore dledicatedl Air Force Warganiuig (Center personnuel who) at teiiil to provide aI

I, rd oltmii~it

Icrs otwir at Hie Air Force Wargamiiig Center deterinied that too miucli tinme was reurdfor a rI.,

I I-r I., aul nl i ~ g:iroec. AIso) notehd waIs the divergent lba kgroiiid of lt-e n-d ply~r>, iil 1 i(

toi iiih)11:N a tiormializeol gaiiie dutrinig mul11tiple Seminars. [lie goal of tis;tei was to evahlite exist jug

Fit%%ar, rogrumis, 10oirmiine which would Ls erve as a plat formn for auitoiiat iiig I lie ref Lv Yr. f1SjILi1 t1

II I" t h at ef5ect ,andI imiplemnti It.

It, was l10ternioed I fItat anu iitegr atiloi of a rtific Ial intell Iigen ce a nd relat ionalI d.at alase mianm"il wIuIeI s\ S

tIlu, ;I il r1afxilfe, uouiovative,, andI cost-effective applroacli for niutiuat ii. Ne-Xrt~ !hj, ct. ;m

sor sseii hell lv Nenuron Dlata, was chosen as the sotaeplat foriii

Anll (hfct-orlinted approach was used to (leteriiiii tlue niecessary struictuires for auwiettog tie pltiotig

vut I of l\VN. 'IbI Is iiuctde i lueI ,I o replaceenti of nuclear str Ike a Ircr a fl th Il eddowuii of i rcra;&ft fom ;iii

bti ase, and(lie rrsolntioti of logistic short falls at vach airbase (hue, to attitio awnl to.i T

Ibh crefa iou of t eknwle~dge bases resulteul fromi the design phase iisiiig tillicat iii ltthVii11-

H ltl f~li~uf In ri' fo)r constant chaniges to fte rules Ii order to pre,'iit a sh- tu i tht acted III

o'rlawue vItIij Ihlie i-sire of the re~d players. TIhis new series of programs proied a niceauus of"l~e i

lu,-i dpyer's timue involved with simplistic, hut linue-conusning work and aniowel t lieni to irrciuse Ilc

fill] on Ili t ot daliiig withI t argft. 4electioii aiid jrioritizal mu.

H7:

